Monocular Depth Estimation for Human-Robot Locomotion

Qilong Cheng'-° and Brokoslaw Laschowski%

'Electrical and Computer Engineering, University of Toronto; “Robotics Institute, University of Toronto; SKITE Research Institute, Toronto Rehabilitation Institute;

“*Mechanical and Industrial Engineering, University of Toronto

Introduction

Residual connections

“P
XA
5',5\" &
& . w

UNIVERSITY OF

TORONTO

CL

W

RRRRR

Depth perception can improve control and
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the depth of real-world stair environments with high accuracy,
despite the ambiguous lighting and surface conditions.
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estimation algorithm, which uses deep
learning to reconstruct and understand 3D
walking environments.
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Our objective was to develop a novel algorithm for monoct
depth estimation of human-robot walking environments usi
deep learning. Our preliminary application focused on extracti
stair height and distance parameters.
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Figure 2: System overview of ZoeDepth deep neural network architecture.

Figure 5: Examples of our depth estimation results. Note that these images
are examples of ones that the previous state-of-the-art failed to classify, while
we successfully predicted the depth.
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Figure 1: Experimental design for sensing 3D walking environments.

was used to extract the staircase
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Table 1: Comparison between the difference depth perception methods.

height and depth, and the distance to the nearest stair.

. n this st W vel novel monocular depth estimation
We used the ZoeDepth deep neural network for our baseline, S s study, we developed I . . P .
. . . & model for human-robot walking, which achieved accuracies on
finetuned on both the NYU-V2 video dataset and our custom-built . .
dataset. Our custormn video dataset was collected using an Intel | = nar with the state-of-the-art for 3D sensing (i.e., stereo camera).
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Figure 4: Our pipeline for the 3D point cloud staircase plane extraction.
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environments and optimizing the computational efficiency for
real-time embedded computing for robot control.
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