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Fig. 1. System overview of the lunar rocket-landing pipeline. The trajectory comprises three phases: (1) Entry, (2) Flip & attitude capture, and (3) Terminal
landing burn to a pre-specified target pad. An RL policy observes vehicle pose/velocity relative to the target and outputs throttle plus 2-DoF gimbal
commands (pitch, yaw) to achieve pose-accurate touchdown while minimizing propellant under lunar gravity (g≈1.62 m/s2).

Abstract—We present a deep reinforcement learning (DRL)
approach for Integrated Guidance and Control (IGC) of a
variable-mass 6-DoF lunar lander. A Soft Actor–Critic (SAC)
policy maps full-state observations directly to thrust and gim-
bal commands, replacing traditional trajectory-planning and
control loops. Training uses physics-informed reward shap-
ing, curriculum learning, and domain randomization across
a deployment ellipse. The resulting policy achieves robust
soft landings with near-vertical glideslope, high Monte Carlo
success rates, and quasi–fuel-optimal performance across wide
variations in initial pose, velocity, and mass. These results
demonstrate DRL-based IGC as a viable alternative to classical
powered-descent guidance methods.
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I. INTRODUCTION

Precision powered descent is essential for future lunar
missions, requiring controllers that remain robust and fuel-
efficient under nonlinear 6-DoF dynamics, thrust–attitude
coupling, actuator limits, and time-varying mass. Classical
systems follow a decoupled GNC pipeline—navigation es-
timates state, guidance generates a trajectory, and a track-
ing controller executes it. Although effective for nominal
missions, this decomposition can introduce thrust–vector
cancellation and degraded robustness under large off-nominal
states or rapid changes in mass and inertia.

Integrated Guidance and Control (IGC) removes this sep-
aration by learning both what trajectory to follow and how
to actuate in a single mapping. Landing poses unique chal-
lenges: feasible descent depends strongly on velocity direc-
tion, yaw is unactuated, thrust–attitude coupling is highly
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nonlinear, and the state space spans a wide deployment
ellipse rather than a single initial pose. These factors make
global planning and local stabilization inseparable and moti-
vate learning-based approaches.

Model-based strategies such as iLQR/SLQ-MPC [1]–[4]
and convex Powered-Descent Guidance (PDG) [5], [6] pro-
vide fuel-efficient trajectories but rely on a separate attitude
controller and degrade under large disturbances or unmodeled
mass variations. Recent RL approaches address some of these
limitations: open-source 6-DoF landing simulators such as
Landing Starships [7] and Starship Landing Gym [8], and
recent high-fidelity 6-DoF studies [9], show that SAC/PPO
can learn flip maneuvers and terminal descent. However,
these works typically employ simplified mass models, limited
initial-condition diversity, or reduced emphasis on global
robustness across deployment ellipses.

In this work, we develop a DRL-based IGC system for a
6-DoF, variable-mass lunar lander trained over a deployment
ellipse. A Soft Actor–Critic policy maps the full vehicle state
directly to throttle and gimbal commands. Learning is en-
abled by a high-fidelity MuJoCo simulator, physics-informed
reward shaping with attitude-gated terms, curriculum learning
that expands the feasible set of initial conditions, and domain
randomization over position, velocity, orientation, yaw, and
mass.

Our contributions are:
• RocketGym: a high-fidelity 6-DoF MuJoCo environ-

ment modeling variable-mass rigid-body dynamics and
thrust–attitude coupling.

• A DRL-based integrated guidance and control policy
trained with curriculum learning and domain random-
ization for robustness across a deployment ellipse.

• Extensive Monte Carlo evaluation demonstrating accu-
rate, robust, and quasi–fuel-optimal landings.

II. MODELING OF THE RocketGym ENVIRONMENT

We develop RocketGym, a MuJoCo-based simulator fea-
turing a 6-DoF rocket body with a 2-DoF gimbaled engine
and time-varying mass. The rocket geometry is adapted from
the Adventures of TINTIN design, and the lunar terrain is
imported from high-fidelity Unreal Engine assets. The lunar
descent task is formulated as a fully observable MDP with
full 6-DoF rigid-body dynamics, mass depletion, gimbaled
thrust actuation, and environmental forces. The control ob-
jective is minimum-fuel landing while stabilizing position,
attitude, and vertical descent toward the designated target
zone.

Environment parameters: The rocket is modeled as a
100 m vehicle with a dry mass of 2× 105 kg and a center of
mass located mid-body, 50 m above the ground at touchdown.
The gimbaled pitch–roll joint is positioned 30 m below the
center of mass, and the landing target is fixed at (0, 0, 0).

State: The rocket state is defined as

st =
[
p, v, q, ω, m, I

]T ∈ R17, (1)

Mass depletion and inertia scaling follow ṁ = −T/(Ispg0)
and I(t) = I0(m/m0), where Isp = 400 s approximates a
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Figure 2: Illustration of the coordinate frames, initial pose,
rocket twist (linear and angular velocities), and the com-
manded control inputs (gimbaled thrust and throttle).

high-performance vacuum engine for lunar descent and g0 =
9.81 m/s2 is standard gravity.

Action: The control input is

ut = [T, θp, θy]
T ∈ R3, (2)

and is obtained from normalized commands [uT , up, uy] ∈
[−1, 1]3 via T = Tmax

uT+1
2 ,θp = 30◦up, θy = 30◦uy. Here,

Tmax provides a thrust-to-weight ratio of approximately 3
(about 2.5× 107 N). The gimbal angles are limited to ±30◦.
All remaining physical parameters follow the RocketGym
specification in section A.

Initial Conditions: The rocket starts at a randomized pose
within an envelope withhorizontal offset x ∈ [500 ± 20]m,
lateral offset y ∈ [0 ± 20]m, altitude z ∈ [500 ± 50]m, and
initial speed up to 50m/s. Initial attitude, pitch and roll of
the rocket, are also randomized within small bounds.

Termination Conditions: An episode ends if any of those
conditions are met: 1) horizontal distance > 700m, 2) speed
> 200m/s, 3) tilt angle > 100◦, 4) CoM height is < 55m or
5) a time limit of 2000 steps is reached.

Success Criteria: A landing is successful if the rocket
touches down within 80m of the target, with tilt ≤ 15◦ and
vertical speed between 0 and 20m/s.

III. CLASSICAL CONTROL - PID BASELINE

To benchmark our RL controller later, we implemented a
simple 2D PID baseline controller with a reduced state

s = [x, ẋ, y, ẏ, θ, θ̇ ]T,

with thrust magnitude T and gimbal angle θg .
1) Outer-loop PD control:

adesx = Kp,x(x
∗ − x) +Kd,x(0− ẋ), (3)

adesy = Kp,y(y
∗ − y) +Kd,y(0− ẏ), (4)

with gravity compensation:

aTx = adesx , aTy = adesy + g.
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2) Conversion to thrust and direction:

Tdes = m
√
(aTx )

2 + (aTy )
2,

ϕdes = 2(aTy , a
T
x ).

Gimbal command:

θg = ϕdes − θ −Kθ θ̇.

3) Final PID control law:

u =

T

θg

 =

 clip(Tdes)

clip(ϕdes − θ −Kθ θ̇)

 .

IV. DEEP REINFORCEMENT LEARNING FOR INTEGRATED
GUIDANCE AND CONTROL

In this section, we formulated the rocket landing problem
as a continuous-control MDP and evaluated several DRL
algorithms for IGC landing.

The raw observation contains the full translational and
rotational state,

ot = [p,v,q,ω,m ] ∈ R14,

However, due to the rotational symmetry of the landing
problem—where approaching from any azimuth is equiva-
lent—the translational state can be reduced to the lateral dis-
tance r =

√
x2 + y2 and altitude z. Exploiting this symmetry

substantially lowers the effective state dimensionality while
preserving full 6-DoF dynamics fidelity.

The action vector consists of commanded thrust and gim-
bal angles,

at = [T, θp, θy],

obtained by linearly mapping normalized policy outputs
ut ∈ [−1, 1]3 to physical engine commands. All algorithms
operate under this shared observation–action interface. For
DQN training, the continuous action space was discretized
by uniformly binning thrust, pitch, and roll into 3 levels
each (thrust ∈ [0, 1], pitch/roll ∈ [−0.1, 0.1]), yielding a
discrete action set of 3× 3× 3 = 27 actions. The agent then
selected from this finite table rather than issuing continuous
commands.

A. Reward Shaping

The reward is designed to balance continuous dense re-
wards with termination sparse rewards to speed up training
porcess. At each timestep, the shaping terms encourage
the rocket to: 1) minimize attitude tilt, 2) reduce vertical
descent velocity, 3) decrease lateral distance to the target,
and 4) shorten overall flight duration. Terminal bonuses
heavily reward 1) successful soft landings, 2) fuel-efficient
touchdowns, and 3) near-target hard landings. Penalties apply
for boundary violations, 1) including excessive tilt, 2) large
lateral error, or 3) high impact speed.

The full set of reward components and their weights is
summarized in Appendix III.
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Figure 3: Training performance of the SAC policy over time.

B. Curriculum Learning

Curriculum learning is implemented by progressively tight-
ening the success criteria. Early stages permit large landing
radius, higher descent velocities, and larger tilt angles; these
thresholds are gradually reduced once the policy achieves
an 80% success rate at each level. This staged progression
improves convergence and mitigates local-minimum failures.

C. Domain Randomization

Domain randomization is applied by varying the initial
conditions of each training episode, exposing the policy to
diverse poses, velocities, and tilts. This improves robustness
and generalization to unseen states. All randomization is
handled within the RocketGym reset() function.

D. Algorithmic Comparison

All three algorithms, : DQN, PPO, SAC, are implemented
in stable-baselines3 with vectorized environments (see sec-
tion A). The goal is to identify which algorithm best handles
6-DoF lander dynamics, with the most stable training, highest
success rate, and best fuel-efficient guidance under identical
environment and rewards.
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V. RESULTS

A. Overall Performance

SAC achieved the highest success rate and most consistent
soft landings, and it is also the one that converges to the
optimal solution the fastest. PPO converged to stable after
over 10 million total timesteps, but to suboptimal thrusting
behavior as the reward still does not stablize. And there is
catastrogic forgetting issues at the early stage of the training.
DQN fails to produce a reliable 6-DoF controller, likely due
to coarse action discretization, finer action grids may improve
performance in future work.

B. Single Episode Rollout RL vs PI

The SAC policy produces smooth, coordinated 6-DoF
trajectories, achieving stable glideslopes and controlled ter-
minal descent. In contrast, the PID controller exhibits strong
cross-coupling effects, overshoot, and late-stage instabil-
ity—largely due to mass depletion and nonlinear attitude
dynamics. SAC implicitly adapts to these variations, whereas
fixed-gain PI control fails to regulate tilt and velocity simul-
taneously, leading to oscillatory or divergent behavior near
touchdown.

Figure 4: (a) Testing results for a random episode using the
SAC RL controller.

Figure 5: (b) Testing results for a random episode using the
PID controller.

C. Monte Carlo Touchdown Statistics

We evaluate policy robustness over 100 randomized initial
conditions.

Figure 6: Monte Carlo landing trajectories over 100 runs.

The trajectory bundle exhibits consistent approach geom-
etry, with most runs converging to a near-vertical glides-
lope before touchdown. Failure analysis shows that 43%
of episodes terminate due to excessive tilt, 27% due to
lateral drift, 19% from high terminal velocity, and 11% from
timeouts. These results indicate that the SAC policy reliably
handles the global descent and flip maneuvers but struggles
with late-phase attitude stabilization. Improving terminal
shaping or integrating a model-based terminal controller may
substantially increase success rates.

In summary, while the policy shows strong global guid-
ance behavior, limited terminal stability remains the primary
source of failure. Future work will focus on improving late-
stage attitude and velocity handling through refined shaping,
adaptive gains, or a model-based terminal landing module.

VI. CONCLUSION

We presented a DRL-based IGC system for 6-DoF plan-
etary powered descent. Using SAC with curriculum learn-
ing, domain randomization, and a high-fidelity variable-mass
dynamics model, the policy learns to regulate the coupled
translational and rotational dynamics of a single-gimbaled
lander. These results provide a proof of concept for applying
learning-based controllers in aerospace guidance and control.
Despite strong global performance, the dominant failures
arise in the terminal phase, where attitude stabilization and
velocity regulation remain difficult. Future work will in-
tegrate physics-model priors and residual RL to improve
training stability, inject model-based structure into the policy,
and further increase touchdown reliability.
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APPENDIX

ROCKET MODEL PARAMETERS

The rocket engine is sized to achieve a thrust-to-weight
ratio (TWR) of 3 on the lunar surface, providing sufficient
authority for descent, flip maneuvers, and terminal landing
burns. A vacuum specific impulse of Isp = 400 s is se-
lected, representative of a high-performance hydrolox engine
operating in near-vacuum conditions. With a wet mass of
5,000 tons and a dry-mass fraction of 10%, the propellant
load is 4,500 tons. The maximum thrust, mass flow rate, and
burn duration follow from F = Ispṁg0 and tburn = mprop/ṁ.
The engine is mounted 30 m below the center of mass for
attitude authority, and the vehicle height is approximately
100 m.

Table I: Rocket Physical and Propulsion Parameters (Lunar
Environment)

Parameter Value
Total wet mass m0 5.00× 106 kg
Dry mass fraction 10%

Dry mass mdry 5.00× 105 kg
Propellant mass mprop 4.50× 106 kg

Specific impulse (vacuum) Isp 400 s
Standard gravity g0 9.81m/s2

Lunar gravity gmoon 1.62m/s2

Chosen TWR (Moon) 3

Maximum thrust Fmax 2.43× 107 N
Mass flow rate ṁ 6.20× 103 kg/s

Burn time tburn 7.26× 102 s
Rocket height 100m

Engine offset from CoM 30m

HYPERPARAMETERS

Table II summarizes the main training hyperparameters
used for SAC in RocketGym. These settings follow standard
stable-baselines3 defaults with minor tuning for stability and
runtime.

Table II: Training Hyperparameters for SAC

Parameter Value

Algorithm SAC (Stable-Baselines3)

Policy network [256, 256] MLP

Learning rate 3×10−4

Batch size 256

Replay buffer 1× 106 transitions

Discount factor γ 0.95

Target smoothing τ 0.005

Entropy coefficient auto

Parallel envs 16

Total steps 5M

Training time 1h 34m (M1 Max)

REWARD SHAPING

Table III lists the continuous shaping terms and terminal
rewards used in RocketGym. These terms balance stabiliza-
tion, fuel efficiency, and safety, and correspond directly to
the implementation described in Sec. IV.

Table III: Reward Components and Weights Used in Rocket-
Gym

Reward Term Equation

Upright alignment (encourages ver-
tical posture)

15 cos(θ)

Vertical velocity shaping (penalizes
vz)

−1 vz

Lateral distance penalty (reduces
horizontal error)

−0.05 d⊥

Step penalty (discourages long
episodes)

−0.01

Terminal Rewards

Successful landing bonus + fuel
preservation

1000 + 5

(
mfuel

m0

)
Boundary violation penalty
(tilt > 100◦, d⊥ > 700m, ∥v∥ >
500m/s)

−500

Crash penalty (non-boundary crash) −100

Crash near target zone bonus
(d⊥ < 100m)

−100 + 10

TRAINING RESULTS FOR DQN AND PPO

Figures 7 and 8 show representative training curves for
PPO and DQN, respectively. Both algorithms exhibit signif-
icantly slower convergence and higher variance compared to
SAC, reflecting their limited sample efficiency for the 6-DoF
landing task.

https://github.com/alxndrTL/Landing-Starships
https://github.com/Armandpl/starship-landing-gym
https://github.com/Armandpl/starship-landing-gym
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Figure 7: PPO training performance for a representative run.
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Figure 8: DQN training performance for a representative run.
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