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Abstract
This work presents the design and development of a low-cost, fully 3D-printed, six-degree-of-freedom (6-DOF) cin-
ema robot arm, IRIS engineered to deliver professional-grade camera motion to independent filmmakers and small
studios. IRIS is conceived as a vertically integrated platform, combining custom mechanical design, modular ac-
tuation, and advanced control strategies to achieve high precision, smooth dynamics, and intuitive operation at a
fraction of the cost of commercial solutions.

Mechanically, IRIS employs a lightweight, modular architecture with strategically relocated actuators, timing-belt
transmissions, and a differential wrist joint to minimize distal inertia while preserving dexterity. The chosen Unitree
BLDC actuators, driven by field-oriented control (FOC), provide precise torque, velocity, and position regulation,
with an impedance control layer enabling compliant, repeatable motion.

On the software side, an imitation learning (IL) framework enables autonomous path planning and dynamic obstacle
avoidance based on expert demonstrations, supported by vision-based feedback for real-time trajectory correction.
The control stack is implemented in ROS with a custom kinematic/dynamic model, allowing seamless integration
of simulation, algorithm development, and hardware deployment.

The prototype, costing under $1,000 in materials, achieves a 1.5 kg payload capacity, ±5 mm repeatability, and
competitive motion speeds compared to high-end cinema robots. Validation includes actuator-level tracking, re-
peatability trials, and end-to-end IL-driven motion tests in real-world scenarios.

This project demonstrates that low-cost, additive-manufactured robotics when combined with modern control and
learning-based planning can democratize access to precision cinematic motion control, expanding creative possibil-
ities for a broader range of storytellers.

Thesis Supervisor: Ali Bereyhi
Title: Professor at the Electrical and Computer Engineering Department, Applied Science and Engineering
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Title: Professor at the Mechanical and Industrial Engineering Department, Applied Science and Engineering
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Chapter 1

Introduction

1.1 What is a cinema robot?

Cinema robots are widely used in the film industry, advertising and in studios. Most cinema robots use the exact

same technology as industrial robot arms, with the only difference being that the end effector has a cinema camera

attached instead (1). The reason cinema robots have gained so much popularity in recent years is due to higher

content consumption by the masses and demand from various industries, such as consumer products, food, artistic

studios, and more (2).

(a) Cinema robot example 1 (b) Cinema robot example 2 (c) Cinema robot example 3

Figure 1-1: Examples of cinema robots used in the industry.

Cinema robots, while widely used in professional film production for decades, remain unfamiliar to most consumers.

These systems share many components with industrial robotic arms used in manufacturing and research, yet they

are uniquely tailored for cinematographic purposes. A popular video from MOCO company Bolt clearly explains

what sets a cinema motion control robot apart from traditional robots (3).
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1.2 What can cinema robot do

To summarize the industry’s expectations for a professional cinema robot arm, several core functional require-

ments must be met:

Tasks 1.

• Programmable Motion Control: The robot must support highly customizable, keyframe-based motion pro-

gramming at both the joint and Cartesian levels at the end-effector. This allows the user to precisely choreo-

graph complex camera movements.

• High Repeatability and Accuracy: Cinema robots must consistently return to sub-millimeter (often pixel-

level) precision. This is critical when replicating shots for visual effects (VFX), product commercials, or com-

posite layers.

• High-Speed Capability: Many shots involve ultra-slow-motion cinematography using high-speed cameras

(e.g., 1000 fps). The robot must move quickly and smoothly to create dynamic movement within a few mil-

liseconds of shutter time.

Figure 1-2: Comparison of control interfaces: Flair software (left) used in cinema robotics for visual keyframing, versus legacy
pendant-based interfaces (right) from industrial robotics.

Beyond these primary functions, several secondary features enhance usability and broaden creative potential:

Tasks 2.

• Intuitive User Interface: Unlike industrial arms programmed with code or outdated pendant-style con-

trollers (as shown in Figure 1-3), cinema robots often leverage visual, timeline-based GUIs like Flair or MRMC’s

Academy Award-winning interface, which allow filmmakers to key frame motion intuitively.

• LargeWorking Space: To accommodate wide sweeping camera moves, dolly-style tracking, or dramatic arcs,

the robot must offer a long reach or be mounted on a motorized track.

• High Payload Capacity: The end-effector (camera mount) must support large cinema cameras, lenses, wire-

less transmitters, follow-focus systems, and even additional lighting.
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• Safety and Compliance: Since film crews work in close proximity to these systems, built-in safety measures

like emergency stops, soft torque limits, and collision detection are essential.

Figure 1-3: On the left shown the complex control software for key-framing the cinema robot arm, while on the right shown
the outdated pendant-style controller that has been used in the industry for over two decades

1.3 What motivates the project?

Despite the wide usibility and interest in cinema robot arms, there are barriers blocking a normal consumer from

accessing cinema robot arms.

The biggest barrier to consumer access to cinema robots is cost. On average, a cinema robot, excluding the camera

or linear rail system, costs around $100,000 to $250,000, depending on the size and features (4; 5; 6). For instance, the

Bolt High-Speed Cinebot costs approximately $200,000 to $250,000, excluding the camera (4). Similarly, theMiloMo-

tion Control Rig, known for its advanced capabilities, is also priced in the same range (5). Another option, the Kira

Cinema Robot, falls within the same price bracket, further contributing to the cost barrier for average consumers (6).

Another issue is the operational barrier - normally, cinema robots require professional operators trained to use

dedicated control software (7). Most controllers for robot arms are still operated, unfortunately, via a teach pendant,

the controller pad used for industrial robot arms (8). The lack of intuitiveness is another reason why cinema robots

have not become more widespread. Others that use some professional control software, such as Lensmaster and

MP Studio, have several notable drawbacks. First, the complexity and the steep learning curve of these systems re-

quire specialized training, which can slow down production and limit usability for less experienced operators (9; 10).

Moreover, these advanced software solutions are typically bundled with high-end robots, making them costly and

inaccessible to smaller studios or independent filmmakers (11). Finally, despite some advancements in user inter-

faces, such as iPad controls in MP Studio, many users still find these systems lacking in intuitiveness compared to

simpler technologies (12).

This project aims to address those two biggest issues.
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1.4 Design objectives

Cinema robots are still a relatively new technology for general consumers, the main objective of this project is to

make this technology more popularized to the masses by bring down the barrier of entry.

First and foremost is to bring down the cost. Compared to most general consumer electronics, like a DJI consumer

graded professional drone to be around 2500 USD, a consumer professional camera like the Sony a7r5 to be around

3000 USD, and consumer graded 3D printers from Bambulab to be around 1500 USD. Driven to be a consumer-level

robot arm that everyone can build at home, we set the cost objective to be less than 1000 USD.

Objective 3.

Cost to be lower than 1000 dollars.

The second is to maintain the functions that an industrial cinema robot can achieve as mentioned in section 1.2:

being programmable, having high accuracy and high speed. This is necessary as it the goal is to make the product

useful for the cinema purpose on budget without sacrificing the functionalities too much.

Objective 4.

Programmable, high accuracy, high speed

Finally, to solve the final barrier of entry being non-intuitive mentioned in section 1.3, the control of the robot arm

should be learning-free, meaning the user do not need to learn another programming language, software or complex

controller interface. Like the DJI drone, all the low-level balancing controls should be in black-box, without the user

needing to interact. The project aims to make the path-planning of the robot arm to be autonomous without needing

the user to program themselves. In addition, instead of having a separate hardware controller, like a pendant, or

running professional graded custom software on high performance computers, the user should be able to control

the cinema robot arm easily by either only having the device itself, or a mobile application without the additional

hassels.

Objective 5.

Intuitive user interface and autonomous planning.

In the later sections, the report will be going into details how each objective is being realized, and evaluate their

effectiveness.

1.5 Scope of the project

Given the objectives outlined in section 1.4, this project aims to design and develop as many components from

scratch as possible to make the cinema robot arm more accessible to hobbyists interested in creating professional-
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quality motion-controlled shots. Vertical integration, developing all components in-house, offers two key advan-

tages: it minimizes overall cost and provides full control over both hardware and software. For example, most struc-

tural components are designed for 3D printing, significantly reducing manufacturing costs and making the system

easier for individual makers to replicate and assemble. This end-to-end integration also enables the development

of custom control software, allowing complete control over motion algorithms, communication protocols, and user

interface design. To fulfill the third objective, intuitive control, imitation learning is employed. This approach allows

the robot arm to learn camera motions from expert demonstrations, mimicking the behavior of professional oper-

ators through supervised learning techniques. The resulting system can generate smooth and purposeful camera

trajectories autonomously. However, designing all components in-house also presents challenges. Time constraints

limit the amount of testing and iteration that can be performed. Furthermore, due to budget limitations and the

absence of economies of scale, high-precision machined parts or advanced materials cannot be used. As a com-

promise, off-the-shelf actuators and motor controllers are selected to minimize development time and cost. These

components are integrated into the system but remain outside the scope of custom design. In summary, the project

is divided into three major components:

1. Mechanical Design: Structural design, 3D modeling, and mechanical assembly of the cinema robot arm.

2. Firmware Development: Low-level actuator control, kinematic/dynamic modeling, and ROS integration

using an in-house package.

3. High-LevelControl Software: Training of imitation learningmodels and development of an intuitivemobile

application for teleoperation and user interaction.

The items that are not included in the design are the actuators, and the low-level communication and control for

the motors. The project will use the SDK or libraries provided by the actuator companies.

16



Chapter 2

Related Work

State-of-the-art

Current Cinema Robot

The current landscape of robotic arms in the filming industry is characterized by high-end, sophisticated equipment

designed primarily for professional use. These robotic arms, such as the Bolt High-Speed Camera Robot and Pho-

toRobot’s Robotic Camera Arm, are state-of-the-art in terms of precision, speed, and versatility. However, they are

also typically large, complex, and expensive, with prices often exceeding tens of thousands of dollars. This makes

them inaccessible for smaller production studios, independent filmmakers, and photography enthusiasts who could

benefit from such technology.

The only affordable robot arm E-Jib still costs over 9000 dollars, with difficult controls and configuration processes.

A brief summary of the state-of-the-art cinema robots are as follows:

Robot Arm Pricing Dimensions (HxWxD) Weight Max Reach Speed Repeatability
Bolt $69,400 plus Max Height: 3.5m 600kg (Bolt + Base) 2.0m Up to 5m/s High precision

PhotoRobot(V8) $100,000 plus 0.8×1.2×1 mm 106 kg 900 - 2906 mm Not specified High precision
Loki $22,450 plus Not specified Base: 45kg, Arm: 30kg 1.1 meters Up to 4m/s 0.05mm

Colossus $200,000 plus 1.47 × 0.81m Base: 45kg, Arm: 30kg 1.1 meters Up to 6.8m/s 0.05mm
E-JIB MINI $9,000 plus N/A N/A 1.8 meters Up to 1m/s High

Table 2.1: Comparison of Latest Cinema Robot Arms

Current 3D Printed Robot Arms

There are a lot of attempts on creating a high-precision and reliable 3D printed robot arms too, notably Arctos and

Dexter, both are able to provide high precision and relatively high payload. However, those 3D printed robot arms

are not customized for cinema purposes, especially on the maximum reach, where normally higher number is more
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(a) Bolts (b) Colossus (c) Loki

Figure 2-1: Examples of state-of-the-art cinema robot arms: (a) Bolts, (b) Colossus, and (c) Loki.

desired. In addition, those arms generally uses stepper motors as the actuator, thus have limited speed and not ideal

for cinema purposes.

Name DOF Payload Reach Accuracy Open Source
Arctos 6 500g 600mm High Yes
Dexter 6 3kg 700mm 0.025 mm Yes

BCN3D Moveo 6 500g 625mm 0.1mm Yes
Mirobot 6 500g 400mm 0.2mm Yes

Table 2.2: 3D printed robot sepcs comparison

(a) Dexter (b) Arctos (c) BCN3D Moveo (d)Mirobot

Figure 2-2: Examples of consumer or open-source 3D printed robot arms: (a) Dexter, (b) Arctos, (c) BCN3D Moveo, and (d)
Mirobot.
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Chapter 3

Design Decisions

The design of IRIS follows the goals in Section 1.4: affordability, ease-of-use, and smooth, precise, repeatable motion

for cinemawork. Achieving these goals requires trade-offs acrossmechanics, actuators, transmissions, and structure.

This section summarizes the key design decisions, why we made them, and the trade-offs involved. In brief, we

explain how each choice contributes to IRIS’s capabilities (tracking accuracy, payload, workspace) and defines its

performance envelope.

3.1 Actuator Selection

In robotic systems, four main types of electric actuators are commonly used: brushed DC motors, stepper motors,

servo motors, and brushless DC (BLDC) motors, as illustrated in Figure 3-1. Each category differs in cost, torque

density, control requirements, and precision, making actuator selection a trade-off between performance and budget.

For this project, the primary objectives are affordability, while achieving sufficient torque, high precision, and re-

sponsiveness for an articulated robot arm. These goals make off-the-shelf actuators an attractive choice, as they

reduce development time and integration complexity. Within the available actuator types, BLDC motors with field-

oriented control (FOC) offer the best balance of torque output, efficiency, precision, and smoothness, while enabling

advanced control modes (torque/velocity/position) over standard interfaces and supporting backdrivability for safe

HRI and learning from demonstration (see Table 3.1 for a summary). Recent cost reductions driven by robotics

and e-mobility have brought FOC-BLDC pricing close to closed-loop steppers, yet with higher torque density and

superior dynamic response. This combination of performance, control flexibility, and cost-effectiveness makes FOC

BLDC motors the most suitable choice for this project.
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Figure 3-1: Comparison of four common actuator types used in robotics: FOC BLDC, stepper, brushed DC, and servo motors.

Table 3.1: Comparison of Common Motor Types for Robotic Applications

Motor Type Pros Cons

Brushed DC Simple control, low cost Low efficiency, wears out quickly, low preci-
sion

Stepper High holding torque, precise open-loop con-
trol, inexpensive

Noisy operation, reduced torque at higher
speeds, high vibration

Servo (RC) Built-in position control, easy interfacing Limited torque, non-industrial durability, re-
stricted feedback capabilities

BLDC with FOC High efficiency, smooth and quiet motion,
precise closed-loop control, backdrivability

Higher cost, complex control electronics

3.2 Torque Sizing

IRIS uses two proximal actuator clusters, three at the shoulder and three at the elbow, with no wrist motors. Distal

DOFs are driven by cable/belt transmissions, reducing moving mass.

Let L1, L2, L3 be link lengths;mL1,mL2,mL3 their masses;ma actuator mass;mp payload. Worst-case horizontal

static torques are:

Tsh = g
[
mL1

L1

2 + nema,eL1 +mL2

(
L1 +

L2

2

)
+mL3

(
L1 + L2 +

L3

2

)
+mp(L1 + L2 + L3)

]
= 9.81 [0.06 + 0.468 + 0.1575 + 0.2125 + 1.275]

≈ 25.8 Nm, (3.1)

Tel = g
[
mL2

L2

2 +mL3

(
L2 +

L3

2

)
+mp(L2 + L3)

]
= 9.81 [0.0525 + 0.1625 + 0.825]

≈ 10.6 Nm, (3.2)

Twr = g
[
mL3

L3

2 +mpL3

]
= 9.81 [0.03125 + 0.375]

≈ 4.0 Nm. (3.3)

Based on the required torque calculations, several off-the-shelf FOC motors fall within the overall budget constraint
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of 1,000 USD for the build: the Damiao motor, the Xiaomi motor, and the Unitree motor, as shown in Figure 3-2.

Their key specifications are summarized in Table 3.2.

Table 3.2: Comparison of Off-the-Shelf FOC Motors Within $1000 Budget

Motor Cost [USD] Peak Tq [Nm] Rated Tq [Nm] Weight [g] Comm. Key Features
Damiao DM-S3519-1EC 83.49 9 3 ≈300 CAN Gearbox, encoder, MIT/speed/pos modes
Xiaomi CyberGear 83.49 12 4 ≈317 CAN FOC, 28-pole, 7.75:1 gearbox
Unitree GO-M8010-6 69.69 23.7 15 ≈530 RS-485 Built-in FOC, temp/pos sensors

Among these options, the Unitree motor offers a favorable balance of cost and performance, delivering substantially

higher torque output at a competitive price. Consequently, it was selected as the primary actuator for IRIS. A more

detailed discussion of the motor performance and the control paradigm is provided in chapter 6.

Figure 3-2: Comparison of three off-the-shelf FOC motors from Damiao, Xiaomi and Unitree

3.3 Alignment Design

In summary, robot-arm kinematics broadly fall into two categories, aligned-axis and offset-axis, as illustrated in

Figure 3-3. In aligned (collinear) designs, joint axes are arranged to minimize offsets. These arms are often stiffer and

better suited to high payloads but can suffer from self-collision and constrainedmotion in certain poses, which limits

reachable orientations. In offset-axis designs, deliberate axis offsets create unobstructed sweeps (often allowing

full 360◦ rotation about selected joints) and enlarge the usable workspace; however, mass asymmetry can reduce

structural rigidity and payload margins compared to aligned counterparts.

IRIS prioritizes cinematographic reach and camera freedom, so we adopt the offset-axis layout to maximize unob-

structed motion and exploit continuous rotation capabilities of the BLDC-driven joints, trading some stiffness for a

larger, more practical workspace for creative shots.
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Figure 3-3: Two axis alignment designs

3.4 Transmission Design

We considered four options for the tranmission design: (i) direct drive: excellent precision and minimal parts, but

poor torque density for our payload; (ii) gears: rigid and low backlash with quality gearing, but heavy, costly, and

mechanically complex; (iii) timing belts: toothed, no slip, low backlash when properly tensioned, low cost; (iv) cables:

light and low backlash, but sensitive to tension drift and long-term stretch.

Timing belts (GT/HTD profiles) are inexpensive and widely available with off-the-shelf pulleys and idlers; they pro-

vide positive engagement (no slip), quiet operation, and low friction. Critically, they allow remote motor placement

Figure 3-4: Types of mechanism used in robot arm transmission

3.5 Structural Design
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(a) Baseline (b) 1-Offset (c) 3-Offset (d) 4-Offset (e) 5-Offset

Figure 3-5: Design-iteration snapshots used in the ablation study. All renders are scaled uniformly for direct visual comparison.

Figure 3-6: The power transmission of the first it-
eration of the design.

We number the revolute joints J1- J6 (base joint yaw to wrist joint

roll) and collect them in θ = [θ1, . . . , θ6]
⊤. The design objective is

to minimize reflected inertia at the flange so a 3 kg cinema payload

can be manoeuvred without overloading the drives. This is pur-

sued by progressively relocating actuator mass from distal links

to the pedestal while preserving torsional stiffness. The baseline

(0−offset) in Figure 3-5a is a direct-drive, six-DOF PUMA chain

with onemotor per joint, whose cumulativemovingmass caps pay-

load at 0.6 kg. In the 1−offset variant (Figure 3-5b), an HTD-5M

belt moves the elbow-pitch motor (J3) to the upper arm, trimming

fore-arm inertia by∼40%while avoiding belt twist through elbow

roll. The 3−offset concept (Figure 3-5c) adds a differential belt stage:

two co-axial motors drive concentric pulleys, where common-mode

speed yields wrist pitch (J5) and differential speed yields wrist roll

(J6), removing both wrist motors from the flange. Extending the

same principle to shoulder and elbow pitch gives the 4−offset lay-

out (Figure 3-5d), which relocates J2-J3 drives to the torso, leaving

only two motors distal and cutting fore-arm mass by ≈83% at the

cost of longer, more compliant belts. The final 5−offset architecture (Figure 3-5e) migrates all actuators to the

pedestal: three concentric carbon-fibre shafts traverse the elbow-inner for elbow roll (J4), outer pair for the belt

drives to J5 and J6. Although this yields the lowest distal inertia, it introduces maximal transmission complexity

and compliance, motivating model-based disturbance rejection in the low-level torque loop.

The first physical prototype implemented a partial version of the 5-offset concept, integrating both the remote

elbow-pitch actuation and the differential wrist mechanism. A hollow shaft (blue in Fig. 3-6) routes the base yaw
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torque (J1) through the center of the structure. Two orthogonal GT belts drive the shoulder and elbow pitch joints:

the green belt conveys torque from the base-mounted shoulder motor to J2 after a 90◦ redirection; the orange belt

bypasses the shoulder stage entirely and twists vertically to reach J3.

At the elbow, a compact bevel-gear differential (copper in Fig. 3-6) splits the elbow-pitch torque (J3) and introduces a

second degree of freedom for forearm roll (J4), leveraging compliance sharing between both axes. A second, smaller

differential stack is embedded at the wrist, combining two coaxial belts to actuate wrist pitch and roll (J5, J6). This

multi-layered design maintains kinematic decoupling and removes all actuators from the arm links, reducing overall

moment of inertia and enabling faster, smoother motion suitable for cinematic shots.

Despite its advantages, this design presented significant challenges in precision alignment, cumulative backlash, and

belt compliance, which must be addressed in future iterations through both mechanical refinement and advanced

control strategies such as torque feedforward and impedance tuning.

Figure 3-7: 3D model of the first design iteration.

Figure 3-8: Second-iteration CAD: modular in-link direct-
drive joints. Each stator is rigidly clamped to the proximal
link, while the rotor hub is integrated directly into the distal
link. No transmission is used between the motor and link mo-
tion.

The second design iteration adopts an in-link direct-drive

topology to eliminate mechanical friction and improve

torque transparency. This shift was motivated by the ob-

servation that timing belts and long transmission paths

in the first design introduced significant estimation un-

certainty, particularly in high-speed maneuvers or when

implementing model-based control.

In this configuration, each joint is actuated by a com-

pact, self-contained module where the stator is rigidly

mounted to the proximal link, and the rotor is directly

coupled to the distal link without any intermediate gear-

ing or belt systems. The absence of transmission backlash

and friction allows the joint torque to be approximated di-

24



rectly by themotor current, scaled by a knownmotor con-

stant, enabling high-fidelity impedance control and back-

EMF-based state estimation.

This architecture also simplifies the dynamicmodel of the robot, making it well-suited for learning-based andmodel-

predictive control methods. Similar direct-drive strategies are used in research platforms such as MIT’s Cheetah

robot and Agility Robotics’ Digit upper-limb joints, where torque control accuracy and backdrivability are critical

design priorities (13; 14).

Moreover, by designing each joint as a repeatable modular actuator block, the robot becomes highly reconfigurable.

Link lengths and joint modules can be swapped or extendedwithminimal reassembly, supporting rapid development

and experimental prototyping.

The third and final design iteration represents a deliberate compromise between the extremes of mechanical sim-

plicity and maximal weight reduction. Drawing inspiration from the earlier 3−offset concept (Figure 3-5c), the

final configuration integrates a differential-driven wrist to reduce the distal inertia while maintaining dexterous

end-effector control.

Specifically, a pair of co-axial actuators mounted at the elbow drives the wrist-pitch (J5) and wrist-roll (J6) axes

via a differential belt stage, significantly reducing the moment of inertia at the tool flange. Simultaneously, the

elbow-pitch motor (J3) is relocated to the shoulder link using an HTD-5M timing belt, which routes torque around

the elbow-roll axis without belt twist. The remaining three actuators-responsible for base yaw (J1), shoulder pitch

(J2), and elbow pitch (J3)-are consolidated at the robot base, while the differential wrist and elbow-roll (J4) motors

are embedded in the distal chain.

This architecture strategically balances several competing objectives: reducing the weight of the distal limb, preserv-

ing mechanical simplicity, and minimizing the number of long, compliance-prone transmission paths. Compared

to the 5-offset design, this configuration avoids the need for multi-layered concentric shafts or complex bevel gear

assemblies, thereby improving manufacturability and reliability.

The final design supports a 1.5 kg professional camera payload at the end-effector, while maintaining sufficient

backdrivability, kinematic decoupling, and reach for high-speed tracking shots and cinematic motion control. The

assembled 3D CAD renders frommultiple perspectives are shown in Figure 4-1. In total, there are only 23 3D printed

parts to construct the entire robot arm. The detailed components breakdown can be seen in Figure 4-5

3.6 Wrist Joint Design

Several wrist joint designs were considered, including direct-drive/serial joint, differential joint and parallel joint.

Serial wrists, which stack multiple motors to achieve roll-pitch-yaw but add weight and inertia at the end-effector;

parallel wrists, which offer a more compact design but involve complex mechanics and control; and differential

wrists, which couple joint motions to reduce actuator count and shift motor mass toward the base, making them
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ideal for lightweight, high-speed applications such as precision camera movement in cinema robotics. To reduce

Figure 3-9: Different wrist joint designs

end-effector inertia while preserving full dexterity, the wrist joint was designed using a compact differential belt

mechanism. This solution allows two coaxial actuators to simultaneously drive the wrist-pitch and wrist-roll axes

by combining their motions through a mechanically decoupled differential stage. Such designs are commonly seen

in high-performance robotic manipulators, including humanoid wrists and camera gimbals, where weight at the

end effector must be minimized. Other transmission systems like using cable

Figure 3-10: Exploded view of the differential wrist joint, showing the co-axial pulley stack, output links, and bearing-supported
housings. This architecture supports combined wrist-pitch and roll with minimal backlash and inertia.

The final wrist design was selected for its compactness, symmetry, and compatibility with cable routing through the

forearm. An exploded view of the joint is shown in Figure 3-10, illustrating the internal pulley layout and bearing

support structure.
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3.7 Design Iterations

Despite the major design decisions having been finalized, the arm underwent numerous redesigns to improve rigid-

ity, reduce complexity, and achieve a more polished overall build. The initial prototype is shown in Figure 3-11. The

following section discusses key aspects of these design iterations and the improvements made at each stage.

Figure 3-11: Design of the initial prototype

3.7.1 Reduced Length

Figure 3-12: Dimension table of the shortened design

In the original design, the elbow and forearm are ℓe = ℓf =

500mm, giving a shoulder-to-tool span Lspan = ℓe + ℓf ≈

1.00m. The static shoulder torque is

τ = mgLeff .

Worst case (all distal mass at the tool) gives a torque-per-kg

of gLspan = 9.81× 1.00 = 9.81 Nm/kg, so form = 3.0 kg,

τ ≈ 29.4 Nm, far above the ∼ 10 Nm continuous limit. A

more realistic distributed-mass estimate places the COM at

ℓe +
1
2ℓf = 0.75m, yielding 9.81× 0.75 = 7.36 Nm/kg and

τ(m=3kg) ≈ 22.1 Nm, still beyond the continuous rating

(and near the 23.7 Nm peak), causing overheating.

Under the 10 Nm continuous limit, the allowable distal mass

is

mmax ≈
10

9.81
≈ 1.02 kg (worst case, 1.00 m), mmax ≈

10

7.36
≈ 1.36 kg (distributed, 0.75 m),
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leaving minimal payload margin once link and actuator masses are included. This motivates shortening the links

to reduce Leff proportionally, bringing operation within the continuous torque envelope and recovering usable

payload.

3.7.2 Timing Belt Flipped Direction

The initial design experienced self-collision issues when certain joints rotated, which restricted the range of motion.

This was most apparent when the elbow joint rotated toward the base, causing the end-effector to interfere with the

timing belt that drives the elbow. Such collisions not only limited joint travel but also posed a risk of mechanical

wear and reduced operational reliability. To address this limitation, the timing belt was repositioned to the opposite

side of the joint. This modification provided an additional 15 degrees of elbow motion, expanding the reachable

workspace and improving the arm’s versatility. Furthermore, relocating the belt shifted the lower arm’s center of

gravity closer to its rotational axis, which reduces torque demands on the joint actuator and contributes to smoother,

more energy-efficient movement.

Figure 3-13: Illustration shows that flipping the direction of the timing belt to avoid self-collision

3.7.3 Change of Timing Belt

Originally, the design employed the widely available GT2 timing belt due to its accessibility and low cost. However,

GT2 belts proved problematic for this application: they lack sufficient strength to prevent slippage under high

payloads, require precise tensioning to achieve their rated capacity. In addition, it is tend to stretch over time,

reducing their service life and necessitating frequent maintenance. To overcome these limitations, the design now

uses an HTD-5M timing belt, which offers a higher torque capacity to prevent slippage under load, greater resistance

to stretching for improved durability, and more reliable performance during sustained high-load operation, thereby

extending the lifespan and enhancing the overall robustness of the cinema robot arm.
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(a) GT2 timing belt (b) HTD-5M timing belt

Figure 3-14: Comparison of the two timing belts

3.7.4 Carbon Fiber Rod Linkage

To mitigate bending and reduce weight, we use carbon-fiber (CF) tubes for the linkages connecting actuator sub-

assemblies. We also evaluated aluminum (Al) options (20mm× 20mm extrusions and smooth round rods). Al is

inexpensive, readily available, and offers off-the-shelf brackets, but slender sections are prone to bending and buck-

ling; increasing cross-section improves stiffness at the cost of mass, which directly reduces end-effector payload.

Practically, CF tubes cut link mass by∼30-60% versus comparable Al while maintaining or increasing bending stiff-

ness; they also damp vibrations better, improving motion quality.

Figure 3-15: 20*20mm carbon fiber tube used in IRIS.

3.7.5 Integration of Many Parts

Initially, themajor sections of the cinema armwere composed of numerous small parts, which significantly increased

assembly complexity. A high part count not only prolongs the initial build but also complicates maintenance-

replacing a motor or renewing a damaged component often required extensive disassembly. In some cases, the

assembly sequence was interdependent; for example, accessing a damaged base component required removing the

entire elbow section. Such sequential dependencies slowed down repairs and made rapid design iterations difficult,

shifting valuable time away from testing and improvement toward lengthy assembly work.

To address these issues, multiple sub-components were consolidated into single, integrated parts wherever possible.

By redesigning critical sections as monolithic single-print 3D-printed pieces, the number of fasteners and mating

surfaces was reduced, eliminating the need for assembly in those areas entirely. For example, structural housings

that previously consisted of multiple plates and brackets were combined into one unified shell, and actuator mounts

were integrated directly into link bodies, as seen in Figure 3-16 This approach not only reduced assembly time and

part misalignment risk but also enabled direct replacement of major modules without disturbing adjacent sections,

greatly accelerating both maintenance and iterative prototyping.
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Figure 3-16: An example of a merged part during the iterative design process. The original base consists of three separated 3D
printed parts, while the final design only consists of one merged part. This greatly reduced the required hardware and assembly
time.

3.7.6 Thickened and Reinforced Parts

Testings revealed that certain sections of the robot arm were prone to failure, particularly during high-load or high-

torque operations. This is particularly true at the motor mounting sections, where the mounting plate needs to

sustain the substantial shear force generated at the rotational plane. To minimize repair frequency and improve

reliability, several components were significantly reinforced. Besides the motor mounting parts, sections at the

linkage-to-3D printed part interfaces where a press-fit connection was used were also extremely critical and were

prone to fractures. When printed with thin walls, these press-fit sections tended to crack under load, leading to

repeated failures. By increasing wall thickness and redesigning the connection geometry for greater rigidity, these

components became far more resistant to high torque and external disturbances, substantially improving the ar-

mâĂŹs durability in experimental use. Examples of those reinforced parts can be seen in Figure 3-17.

Figure 3-17: Examples of the thickened parts.
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Chapter 4

Final Design

Figure 4-1: Final design: 3D CAD views from multiple angles showing actuator placement, elbow belt transmission, and the
integrated wrist differential. This configuration balances weight reduction, mechanical simplicity, and dexterity, suitable for
cinema-grade robotic motion.

4.1 Specifications

The final design, shown in Figure 4-4, supports a 1.5 kg professional camera payload at the end-effector while

maintaining sufficient backdrivability, kinematic decoupling, and reach for high-speed tracking shots and cinematic

motion control. The assembled 3D CAD renders from multiple perspectives are illustrated in Figure 4-1. The robot

arm is constructed from only 23 custom 3D-printed parts, significantly reducing assembly complexity. A detailed
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breakdown of these components is provided in Figure 4-5. The overall specifications of the final robot arm are

summarized in Table 4.1.

Table 4.1: Specifications of the Final Cinema Robot Arm Design

Specification Value / Description

Degrees of Freedom (DoF) 6
Total Mass (incl. electronics) ∼8.5 kg
Payload Capacity 1.5 kg
Workspace Dimensions Reach ∼0.7 m, total sweep diameter ∼1.4 m
Repeatability ± 5 mm
Power Consumption ∼60-100 W (average), ≤300 W peak (all joints at max torque)
Estimated Cost $800-$1000
Assembly Time ∼1-2 hours

4.2 DH Table

Table 4.2: Denavit-Hartenberg Parameters of the Final Robot Arm

i αi−1 ai−1 (mm) di (mm) θi

1 −90◦ 0 314.5 θ1
2 0◦ 66.5 0 θ2
3 0◦ 298.53 0 θ3
4 0◦ 325.12 0 θ4
5 +90◦ 0 0 θ5
6 0◦ 0 42.82 θ6

Figure 4-2: DH table dimension illustration of the final cin-
ema robot design

The kinematic specification follows the DH parameters

in Table 4.2. The wrist is a spherical (intersecting-axes)

differential design: the roll, pitch, and yaw axes inter-

sect at the end-effector’s wrist center. Consequently, in-

verse kinematics decomposes cleanly into (i) a position

subproblem for the first three (shoulder elbow) joints to

place the wrist center, and (ii) an orientation subprob-

lem for the last three wrist joints to realize the desired

end-effector rotation. With all threewrist link lengths and

offsets zero (ideal spherical wrist: a3 = a4 = a5 = 0,

d4 = d5 = d6 = 0 except any final tool flange offset), the

rotation matrix factors as

0R6 = 0R3
3R6,

allowing 0R3 to be obtained from the wrist center position

solution and 3R6 solved directly for the three wrist joint
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angles. This structural decoupling simplifies analytic in-

verse kinematics, improves numerical conditioning, and reduces computational cost.

4.3 Final Build

The final build of the cinema robot arm utilizes all-black filament to resemble professional commercial cinema

equipment. As the robot is intended for general consumer use, the design emphasizes a non-intimidating and user-

friendly appearance. Several minor aesthetic enhancements were incorporated: a black protective sleeve was added

to conceal the motor wiring, all electronic components were enclosed within the structure, and a standard hot shoe

mount was integrated to facilitate the attachment of camera equipment using a quarter-inch screw interface.

Figure 4-3: Final construction of the cinema robot arm
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4.4 Bill of Materials (BOM)

The hardware of the design focuses on using the off-the-shelf, easily accessiable componments. Those includes

bearings, carbon fiber rods, timing belts, screws and nuts. All the componments can be found either on Amazon or

Aliexpress. The detailed BOM is listed as follows:

Table 4.3: Preliminary Bill of Materials (BOM) for cinema robot arm prototype.

Category Item / Spec Qty Unit
(USD)

Link

Actuators Unitree Go-1 actuator 6 $69.65 Taobao
Linkages Carbon fiber square tube 25mm width, 2mm

thickness, 500mm length
1 $27.40 AliExpress

Bearings Deep groove 26mm×17mm×5mm
(OD×ID×Depth)

2 $1.59 AliExpress

Deep groove 50mm×40mm×6mm
(OD×ID×Depth)

6 $2.61 Amazon

Deep groove 42mm×30mm×7mm
(OD×ID×Depth)

5 $2.43 AliExpress

Transmission HTD-5M rubber timing belt, 150 teeth
(750mm)

1 $15.19 Amazon

HTD-5M rubber timing belt, 160 teeth
(800mm)

2 $15.56 Amazon

Fasteners M4 screws and nuts set 1 $16.69 Amazon
M3.5 screws and nuts set 1 $10.35 Amazon

Sensors Intel RealSense 1 $163.63 AliExpress
Misc. Wire sleeving / braided loom 1 $9.26 Amazon
Electronics Jetson Nano 1 $216.15 AliExpress

RS-485 hub / adapter 1 $0.99 AliExpress
Main power supply (≥300W) 1 $34.97 AliExpress

3D Printed
Material

PLA filament, 30% infill, honeycomb interior
(Bambulab)

1 $16.99 Bambulab

Total $991.63 USD
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Figure 4-4: Final design components and layout illustrations
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5. Di�erential Componments: 

1. Base Componments:

2. Shoulder Componments:

3. Elbow Componments: 

4. Wrist Componments:

×1 A1

×1 A2

×1 B1

×1 B2

×1 B3

×3 C2

×1 C1

×1 C3

×1 D1

×1 D2

×1 E1

×1 E3

×1 E4

×2 E2

×1 E5

×1 E6

×1 E7

×1 E8×1 F1

6. End-e�ector Connector:

Figure 4-5: Final design all 3D printed components
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Figure 4-6: Final build of IRIS
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Chapter 5

Kinematics

Figure 5-1: Illustration of the robot frames, camera frame, and end-effector frame. Joint frames are simplified for clarity.

5.1 Forward Kinematics

Forward kinematics (FK) maps joint angles q = [θ1, . . . , θ6]
⊤ to the end-effector pose.

Definition.

T6
0(q) =

R6
0(q) pEE(q)

0⊤ 1

 , R6
0 ∈ SO(3), pEE ∈ R3. (5.1)

Position (joints 1–3).

T3
0(θ1, θ2, θ3) = T1

0 T
2
1 T

3
2, (5.2)

pw(θ1, θ2, θ3) =
[
T3

0

]
1:3, 4

, (5.3)

pEE(q) = pw(θ1, θ2, θ3) + d6 R
6
0(q) ẑ6. (5.4)

38



Orientation (joints 4–6).

R6
3(θ4, θ5, θ6) = Rx(θ4)Ry(θ5)Rz(θ6), (5.5)

R6
0(q) = R3

0(θ1, θ2, θ3)R
6
3(θ4, θ5, θ6). (5.6)

Final form.

T6
0(q) =

R3
0(θ1, θ2, θ3)R

6
3(θ4, θ5, θ6) pw(θ1, θ2, θ3) + d6 R

6
0(q) ẑ6

0⊤ 1

 . (5.7)

This explicitly decouples FK: joints 1-3 determine the wrist-center position, while joints 4-6 determine orientation

about that point. Furthermore, the forward kinematics was verified and testing on both simulation in Python and

IRIS. The simulation results can be seen in Figure 5-2, where by commanding individual joints, the end-effector

changes accordingly. This forward kinematics algorithm is also the backbone of the later simulation for inverse

kinematics, and test for singularities. To deploy in the real-world testings, all the torque output at each joint is set

to be zero. The actuators are only used for encoder position purpose. The result of the real-world test can be seen

in Figure 5-3.

Simulation of the forward kinematics 3D visualization for the simulated FK

Figure 5-2: Forward kinematics simulation

Figure 5-3: 3D visualization for real-world deployment of FK on IRIS
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5.2 Inverse Kinematics

IRIS has a spherical wrist, so IK decouples: joints 1−3 solve for the wrist-center position; joints 4−6 solve for the

orientation about that point.

Wrist center.

pw = pEE − d6 R6
0ẑ6, pw = [xw, yw, zw]

⊤. (5.8)

Position (joints 1–3).

r =
√
x2w + y2w, s = zw − d1, (5.9)

θ1 = atan2(yw, xw), (5.10)

cos θ3 =
r2 + s2 − a22 − a23

2a2a3
, (5.11)

θ3 = atan2
(
±
√
1− cos2 θ3, cos θ3

)
, (5.12)

θ2 = atan2(s, r)− atan2
(
a3 sin θ3, a2 + a3 cos θ3

)
. (5.13)

Orientation (joints 4–6).

R6
3 = (R3

0)
⊤R6

0 = Rx(θ4)Ry(θ5)Rz(θ6), (5.14)

θ5 = atan2
(
r13,

√
r211 + r212

)
, (5.15)

θ4 = atan2(−r23, r33), (5.16)

θ6 = atan2(−r12, r11), (5.17)

where rij are the entries ofR6
3. At thewrist singularity (cos θ5 ≈ 0), fix θ6 (e.g. 0) and recover θ4 from atan2(r21, r22)

or use damped least squares.

Final analytical solution.



θ1

θ2

θ3

θ4

θ5

θ6


=



atan2(yw, xw)

atan2(s, r)− atan2
(
a3 sin θ3, a2 + a3 cos θ3

)
atan2

(
±
√
1− cos2 θ3, cos θ3

)
atan2(−r23, r33)

atan2
(
r13,

√
r211 + r212

)
atan2(−r12, r11)



. (5.18)
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Simulation of IRIS teleoperated using inverse kinematics 2D view of the end-effector trajectory

3D view of the end-effector trajectory Joint states of IRIS under inverse kinematics

Figure 5-4: Simulated inverse kinematics using analytical solution

We also evaluated the IK performance in a simulated environment developed in MATLAB, as seen in Figure 5-4. In

the simulation, the end-effector was teleoperated via keyboard inputs to various target positions, and the resulting

end-effector trajectory, both in 3D and 2D, along with the corresponding joint angles, was plotted over time. The

simulation results demonstrate the overall stability of the IK solver. However, in the presence of singularities, sharp

spikes appear in the joint angle plots, indicating instability and non-ideal behavior. These singularity-related issues

are further analyzed in a subsequent section using the MATLAB simulation framework.

5.3 Singularities

Singularities are a critical bottleneck in manipulation: they can amplify joint velocities and torques, risking actuator

damage, loss of control, and unsafe behavior. Ensuring a safe workspace for IRIS therefore requires a clear under-

standing of where singularities arise and how to avoid them. Although robust handling of singularities remains an

active research problem, this section outlines the common cases relevant to our 6-DoF arm with a spherical wrist,

leveraging its position-orientation decoupling to localize (i) elbow/planar singularities in the positioning chain and

(ii) wrist gimbal-lock in the orientation chain. We also did a simulation on the singularities based on the analytical

solutions of the analysis.
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(a) Velocity/torque blow-up near w(q)→0. (b)Workspace (blue) and singular samples (red).

Figure 5-5: Singularity analysis: (a) hardware-oriented simulation; (b) joint-space sampling with manipulability thresholding.

A configuration is singular when the geometric Jacobian J(q) loses row rank:

ẋ = J(q) q̇, τ = J(q)⊤w, J < m ⇔ σmin(J) = 0. (5.19)

For a 6-DoF arm with a spherical wrist, singularities typically arise in three familiar situations: (i) elbow/planar

alignment when the upper arm and forearm become collinear, (ii) boundary configurations at the edge of reachable

workspace where geometric leverage collapses, and (iii) wrist gimbal-lock when two wrist axes align (e.g., the

middle wrist at ±90◦ in an XYZ wrist), removing one rotational DoF. The following sections analyze each case and

present the corresponding closed-form relations at singularity, together with numerically robust remedies used in

our system.

Wrist Singularity

Wrist gimbal-lock happens when two wrist axes align (e.g., the middle wrist joint at ±90◦ in an XYZ wrist). One

rotational DOF is lost, orientation changes become ambiguous, and IK may cause θ4 and θ6 to spin in opposite direc-

tions unless the orientation task is relaxed or constrained. Nominal extraction from R6
3 = Rx(θ4)Ry(θ5)Rz(θ6)

with entries rij :

θ5 = atan2
(
r13,

√
r211 + r212

)
, θ4 = atan2(−r23, r33), θ6 = atan2(−r12, r11). (5.20)

At gimbal lock, cos θ5 = 0 (θ5 = ±π
2 , thus r11 = r12 = 0), only one combination of (θ4, θ6) is observable:

θ5 = +π
2 : θ4 + θ6 = ψ+ ≜ atan2(r21, r22), (5.21)

θ5 = −π
2 : θ4 − θ6 = ψ− ≜ atan2(−r21, r22). (5.22)

Equivalent free-parameter form (γ ∈ R):

θ5 = +π
2 : θ4 = γ, θ6 = ψ+ − γ, (5.23)

42



θ5 = −π
2 : θ4 = γ, θ6 = γ − ψ−. (5.24)

If enforcing a specific θ⋆6 (continuity), then

θ5 = ±π
2 , θ4 =


ψ+ − θ⋆6 , θ5 = +π

2 ,

ψ− + θ⋆6 , θ5 = −π
2 .

(5.25)

Planar/Elbow Singularity

Elbow (planar) singularities occur when the forearm aligns with the upper arm (fully extended or folded). In this

state, one in-plane rotational DOF collapses, so small Cartesian motions demand very large joint velocities, making

the arm appear ’stiff’ or hard to move sideways. Boundary singularities occur at the edge of the workspace, when

the wrist center reaches its maximum reach. Here, the geometry saturates, leverage is poor, and controllers may

chatter as they struggle to maintain motion. For pw = [xw, yw, zw]
⊤, r =

√
x2w + y2w , s = zw − d1:

sin θ3 = 0 (θ3 = 0, π) ⇒ θ2 = atan2(s, r), θ1 = atan2(yw, xw), (5.26)

and one in-plane rotational DOF is lost.
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Chapter 6

Dynamics

6.1 Field Oriented Control (FOC)

The brushless DC (BLDC) actuator used in IRIS is driven by a field-oriented control (FOC) scheme to achieve high-

precision motion, with tracking accuracy on the order of millimeters. Although this project did not cover the design

of the FOC driver or the algorirthm, I think it is important to outline the working of the FOC algorithm to help

understand the low-level feedback control done in the later chapter.

FOC operates by transforming the three-phase stator currents into a rotating reference frame alignedwith the rotor’s

magnetic flux, thereby decoupling torque-producing and flux, producing current components.

This decoupling allows independent regulation of torque and flux via two orthogonal current control loops, enabling

smooth torque output, fast dynamic response, and low torque ripple even at low speeds.

An outer impedance control loop computes the desired torque from position and velocity errors (plus feedforward

terms), while the inner FOC current loops ensure that the commanded d and q axis currents are accurately tracked.

This architecture combines the dynamic compliance of impedance control with the precision and responsiveness of

FOC, making it well suited for robotic joint actuation.

Clarke & Park transforms. Measured phase currents are mapped to αβ and then to dq using

iα
iβ

 = 2
3

1 − 1
2 − 1

2

0
√
3
2 −

√
3
2



ia

ib

ic

 , (6.1)

id
iq

 =

 cos θe sin θe

− sin θe cos θe

iα
iβ

 . (6.2)

The inverse transforms generate va, vb, vc from the commanded v∗d, v
∗
q .
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Figure 6-1: Illustration of the FOC vector trans-
form.

PMSM model in the dq frame. The electrical dynamics (per

phase-equivalent) are

vd = Rsid + Ld
did
dt − ωeLqiq, (6.3)

vq = Rsiq + Lq
diq
dt + ωe(Ldid + λm). (6.4)

The electromagnetic torque is

τ =
3

2
np

(
λmiq + (Ld − Lq)idiq

)
. (6.5)

For a surface-PMSM (SPMSM) with Ld ≈ Lq , this reduces to

τ ≈ 3

2
npλm iq. (6.6)

Inner current control with decoupling. Let i∗d, i∗q be current references. Two PI regulators track them and add

feedforward decoupling/back-EMF compensation:

vd,PI = Kp,d(i
∗
d − id) +Ki,d

∫
(i∗d − id) dt, (6.7)

vq,PI = Kp,q(i
∗
q − iq) +Ki,q

∫
(i∗q − iq) dt, (6.8)

v∗d = vd,PI +Rsid − ωeLqiq, (6.9)

v∗q = vq,PI +Rsiq + ωe(Ldid + λm). (6.10)

The commanded v∗
dq is inverse-Park/Clarke transformed to v∗

abc and synthesized via SVPWM. Voltage and current

limits enforce DC-bus and thermal constraints with anti-windup.

Torque mapping and references. For SPMSM (max-torque-per-ampere at low speed): i∗d = 0 and

i∗q =
2

3np λm
τ∗. (6.11)

For an interior PMSM (IPMSM), use an MTPA law to set i∗d < 0; in field-weakening at high speed, further reduce i∗d
to satisfy |v∗

dq| ≤ Vmax.

6.2 Impedance Control

Each BLDC motor employs impedance control to accurately track the desired position, velocity, and torque. Con-

ceptually, impedance control can be modeled as a serial spring-damper system, where the stiffness term governs
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Figure 6-2: Overview of the impedance control flow chart in an actuator. This diagram does not include gravity compensation,
in other words, there is no inverse dynamics compensation in the control loop

position tracking and the damping term governs velocity tracking. In more advanced implementations, if the in-

verse dynamics can be computed, a torque feedforward term can be incorporated into the total torque command to

further enhance tracking performance. Overall, the control law can be expressed as:

τcmd = Kp

(
θd − θ

)
+Kd

(
θ̇d − θ̇

)
+ τff , (6.12)

i∗q =
τcmd

Kt
=

1

Kt

[
Kp(θd − θ) +Kd(θ̇d − θ̇) + τff

]
, (6.13)

where τcmd is the desired torque output from the motor; and i∗q is the desired current output from the FOC motor.

This equation provides an intuitive mapping from the required current input to the resulting torque output.

The overview diagram of how each components flow to each can be seen from the diagram below: To validate the

control algorithm, a dedicated actuator test stand was designed and constructed, as shown below:

Figure 6-3: Actuator test stand illustration

The test stand serves two major purposes:

1. Test the individual actuator’s repeatability

2. Test the individual actuator’s position tracking

1. To conduct the repeatability test, a dial is placed at the

end of the test stand arm, so that the actuator can move

the arm (first test without load, second test without load)

to the preset location. The dial would then measure the

difference between each iterations. The real-life test stand

for repeatability is shown in Figure 6-4, where the test

stand housing and the arm are 3D-printed components.

The iterations and the amount of error per trail is plotted

in Figure 9-2 in Section 9, where it shows a progressively

increasing error of the motor.
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Figure 6-4: The repeatability test stand of the actuator.

Figure 6-5: Dial used in the accuracy
testings

2. For the Position tracking test, we evaluate how the actuator’s position-

tracking performance degrades under externally applied loads at the end ef-

fector (arm tip). Specifically, a known payload is mounted at the tool flange

and the joint is commanded to follow reference trajectories (steps, ramps, and

sinusoids across a frequency sweep). We record the measured joint angle at

high rate and quantify tracking via steady-state error, peak overshoot, rise/set-

tling time, RMS error over a cycle, and closed-loop bandwidth. To isolate load

effects, we repeat the protocol across multiple payloads (including the nominal

camera mass) and vary the trajectory amplitude/speed to probe both low- and

high-velocity regimes. The controller (PID with feedforward gravity/viscous

terms unless otherwise stated) and all gains are held fixed across conditions.

Together, these trials characterize the actuator’s ability to maintain precise positioning under realistic end-effector

loads and provide operating envelopes for safe, repeatable motion.

6.3 Gravity Compensation

Having only impedance control works well under light or no load, where tuning the stiffness and damping gains can

yield sub-degree rotational accuracy. However, performance degrades with heavy or load-varying conditions (e.g.,

along the motion), where unmodeled gravity, friction, and coupling terms dominate. This was a major bottleneck

in our system. To address it, we add torque feedforward to provide gravity and disturbance compensation on top of

impedance control.

The implementation is as follows: Based on Lagrangian physics, the full dynamics of the 6 DOF robot arm can be

expressed as:

M(q) q̈+C(q, q̇) q̇+G(q) = τ , (6.14)
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whereM is the inertia matrix, Cq̇ the Coriolis/centrifugal vector andG the gravity vector.

Because static positioning accuracy is limited mainly by G, we cancel it in feedforward and leave the feedback

loop to correct only residual modeling error.

For the present arm-links modelled as mass-less tubes and actuators treated as point masses located on their joint

axes-the closed-form gravity term is

G(q) = g



0

(m3 +mw)L1 cos q2 +mwL2 cos(q2 + q3)

mwL2 cos(q2 + q3)

0

0

0


, (6.15)

with mw = m4 + m5 + m6, link lengths L1, L2, and standard trigonometric shorthands. The resulting hybrid

control law is

τcmd = G(q) +Kp(qd − q) +Kd(q̇d − q̇), (6.16)

where diagonal gainsKp,Kd are tuned just high enough for the desired closed-loop bandwidth because gravity no

longer creates steady-state error.

In software (1 kHz loop) we evaluate (6.15) symbolically, divide each component by its gearbox ratio to obtain

rotor-side torques, clamp to the motor limits, and finally add the PD term (6.16).

In real-world testing however, several issues led to unsatisfactory results. First, the system dynamics model was

inaccurate. Because IRIS uses 3D-printed components, the part masses and inertia are not well characterized, intro-

ducing modeling discrepancy. Second, assembly tolerances are non-negligible. Rotational axes, such as the elbow

and shoulder, can be misaligned, producing residual errors in the Denavit-Hartenberg (DH) parameters. Together,

these factors yield incorrect model-based (theoretical) torque feedback.
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Chapter 7

Classical Controls

Figure 7-1: Full stack of the cinema robot arm framework illustration

Before fully realizing autonomous path planning on IRIS, foundational teleoperation and baseline path-execution

capabilities must be in place. This chapter details the teleoperation pipeline and a teach-and-repeat mechanism that

leverages IRIS’s high-resolution encoders.

7.1 Framework Overview

The control system runs on Ubuntu 20.04 with ROS Noetic. A Python control layer interfaces with the Unitree

SDK to issue low-level FOC commands, while each IRIS actuator integrates BLDC drive electronics, encoder-based

position/velocity sensing, and torque estimation for precise, smooth motion. The full stack comprises six integrated
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actuators, a depth/RGB camera, vendor SDKs for sensing and control, and a custom ROS package for data collection

and inter-process communication; a high-level control layer can be instantiated as either imitation-learning policies

or classical controllers. A detailed system diagram is shown in Figure 7-1. In the configuration depicted, high-

level actions are produced by an imitation-learning policy (see chapter 8); for baseline operation, the same interface

accepts classical control outputs (e.g., joint setpoints from teleoperation or IK-based Cartesian commands), allowing

modules to be swapped without changes to the low-level interface on IRIS.

7.2 ROS Integration

Figure 7-2: MoveIt! framework overview

ROS Noetic is used on Ubuntu 20.04 to provide a mature ecosystem (RealSense drivers, MoveIt! IK, RViz, rosbag),

standardized message interfaces (sensor_msgs/Image, sensor_msgs/JointState, geometry_msgs/PoseStamped), and

reproducibility tooling (tf2 for transforms, message_filters for time sync). These choices reduce integration effort

and let the same node graph support both classical controllers and learned policies on IRIS.

On IRIS, ROS bridges vendor SDKs and high-level control. Joint states are published as JointState; RGBD streams

are published as Image with synchronized CameraInfo, aligned via message_filters. A tf2 tree (base→ links→ end-

effector→ camera) derived from URDF/Xacro keeps frames consistent for Cartesian commands and logging. Tele-

operation and imitation-learning nodes emit joint or Cartesian targets that an IK layer maps to trajectories. RViz

provides live visualization, while rosbag records synchronized RGBD and joint data for datasets. A watchdog mon-

itors temperatures, torque estimates, and limits, preempting motion on faults.

ROS 1 is preferred over ROS 2 in this build due to broader package availability on Ubuntu 20.04 (RealSense, existing

Unitree wrappers, MoveIt!), which minimizes integration risk. The node graph cleanly separates low-level I/O, kine-

matics/supervision, and high-level modules (teleoperation, teach-and-repeat, imitation learning), and namespacing

keeps the design ready for multi-IRIS operation.
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7.3 Teleoperation

Teleoperation provides a simple, reliable means to position IRIS and to validate accuracy before fully autonomous

operation. Two modes are implemented:

(1) Individual Joint Control - Each joint can be commanded independently to a desired position, with optional

simultaneous moves across multiple joints. This mode is used for setup, calibration, and fine adjustments.

(2) End-Effector Control - Desired Cartesian pose commands are mapped to joint angles via the inverse-kinematics

solver derived in chapter 5 (Chapter 4). This mode supports precise manual framing for cinematic shots.

7.4 Teach-and-Repeat

Algorithm 1: Teleoperation and Teach-and-Repeat Control Flow on IRIS
Data: ROS topics: joint states, Cartesian targets, joint targets; Unitree SDK API for low-level FOC
Result: Real-time teleoperation or recorded-trajectory playback
Initialization:

Start ROS master (Ubuntu 20.04);
Launch Python control node;
Connect to Unitree SDK over Ethernet (UDP);
Initialize joint-state subscribers and command publishers;
Home and calibrate all joints on IRIS;

Teleoperation Mode:
if mode = JointControl then

Read joint position commands from UI;
Publish joint setpoints to Unitree SDK (position control);

else
mode← EndEffectorControl;
Read Cartesian pose commands from UI;
Solve IK (chapter 5) for target joint angles;
Publish joint setpoints to Unitree SDK;

end

Teach-and-Repeat:
Teach phase:

Enable backdrivable/low-stiffness mode on all joints;
Record {q(t), q̇(t), t} from encoders;

Repeat phase:
Move to home for a collision-free start;
Replay recorded trajectory: stream joint setpoints synchronized to recorded timestamps;

Continuous Safety Supervision:
Monitor joint states and SDK status;
Abort on over-torque, over-temperature, or user stop;

Teach-and-repeat lets an operator physically demonstrate a camera move once and have IRIS reproduce it consis-

tently. Using the Unitree actuator FOC controllers with high-resolution encoders (approximately 0.1◦ per joint

under no load), IRIS records joint positions, velocities, and timestamps during the demonstration. After confir-

mation, IRIS returns to a safe home configuration to avoid collisions, then executes the captured trajectory with
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time-synchronized playback. This workflow is useful for repeatability testing and for recreating identical shots

across takes while preserving expert-designed motion paths.

The pseudocode in algorithm 1 summarizes the control logic used by both teleoperationmodes and the teach-and-repeat

routine.

This architecture leverages the real-time capabilities of the Unitree SDK for low-level actuation while ROS provides

message passing, kinematics, safety supervision, and mode switching. The Python layer serves as the high-level

coordinator on IRIS, translating user inputs or learned policy outputs into precise joint commands and ensuring

reproducible trajectory execution via teach-and-repeat.
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Chapter 8

Imitation Learning

Figure 8-1: Imitation learning pipeline illustration

The primary objective of the control system for IRIS is to achieve autonomous, real-time path planning and obstacle

avoidance while maintaining smooth, cinematic motion in unstructured environments.

Traditional Model Predictive Control (MPC), though powerful for constrained optimal control, requires solving

sizeable optimizations at each control step, which burdens on-board compute, especially when paired with high-

rate perception. Even with recent advances in sampling-based and information-theoretic MPC that push real-time

performance, the computational load and tuning effort remain significant on embedded platforms (15; 16). Moreover,

MPC performance depends on accurate models; for IRIS’s fully 3D-printed, custom-built manipulator, variability in

link compliance, joint friction, and payloads makes faithful identification challenging.

Reinforcement Learning (RL) offers another approach, but robust policies typically rely on a high-fidelity ’digital

twin’ and large-scale data generation (17; 18). World-model approaches reduce interaction cost yet still face transfer
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issues when contact and actuator effects are imperfectly captured (19). For IRIS, constructing a precise digital twin

is difficult due to mechanical tolerances, material flexibilities, leading to a nontrivial sim-to-real gap and risky on-

hardware fine-tuning.

In contrast, IL avoids explicit modeling and large-scale simulation by learning directly from expert demonstrations.

Deployed on IRIS, IL can also run within the available compute budget and support real-time inference without

costly online optimization, while reproducing smooth, collision-free camera motions. Given its lack of explicit

modeling requirements and low online compute cost, imitation learning (IL) is a natural candidate for autonomous

path planning on IRIS. A more comprehensive comparison between the three approaches are listed in Table 8.1.

Table 8.1: Concise comparison of control paradigms for IRIS.

Method Compute
(train / infer)

Online
opt.

Model
reliance Robustness Zero-

shot

MPC - / High Yes (QP/NLP) High (dyn. + contacts) Good under constraints; sensitive to model mismatch Low-Mod.
RL (policy) Very high / Low No (eval) Med. (sim fidelity) Domain rand. helps; sim→real gaps persist Mod.

IL / Diffusion High / Low-Mod. No Low (model-free) Stable in-distribution; diffusion smooths actions Mod.

Notes. ’Compute’ reports offline training vs. on-board inference cost. ’Zero-shot’ = behavior on unseen scenes without task-specific finetuning.
Representative refs: MPC (15; 16; 20); RL (17; 18; 19); IL/Diffusion (21; 22).

8.1 Dataset Collection

Why collect our own data on IRIS? Although large public datasets for autonomous manipulator path planning

exist (see Table ??), they do not reflect IRIS’s particulars. IRIS is a custom, largely 3D-printed manipulator with an

end-effector-mounted RGB-D camera, off-the-shelf datasets cannot capture its morphology, cable routing, joint fric-

tion, and camera extrinsic. Collecting demonstrations yields image-action pairs from the correct moving viewpoint

and implicitly encodes the arm’s reachable workspace, self-collision envelope, and compliance without hand-crafted

models or calibration priors. In practice, this lets the policy learn a robot-specific visuomotor mapping and local

obstacle geometry directly from data, avoiding brittle state estimation about kinematics, link flex, or scene layout.

Table 8.2: Representative public datasets for robot-arm visuomotor IL/path planning. Abbreviations: MV = multi-view, D =
depth, lang. = language.

Dataset Scale Modalities Format Platform(s)

Open X-Embodiment (OXE) (23) 1M+ traj. RGB(+D), proprio, lang. RLDS episodes 22 robot embodiments
DROID (24) 76k traj./350 h MV RGB, D, proprio, lang. Episodic loaders Multi-lab real arms
BridgeData V2 (25) 60,096 traj., 13 skills RGB(/D), proprio, lang./goal img. Episodic loaders Low-cost 6-DoF arm
RoboNet (26) 15M frames RGB, proprio TFDS (TensorFlow Datasets) Sawyer, Baxter, Franka, KUKA, etc.
BC-Z (27) ∼12k demos (door), 100+ tasks RGB, proprio, lang. goals Episodes (Kaggle) Mobile base+ arm; tabletop
RLBench (sim) (28) 100+ tasks (sim) RGB-D, state (sim) NPZ/API Franka-like arm (sim)

All the dataset used during training is collected via manual export demonstrations. To mimic how humans will

move their arms while filming, an expert operator will drag the robot arm’s end-effector to move from point A

to point B following a desired trajectory. In the absence of obstructions, the end-effector traced an approximately

straight line between the two waypoints. When obstacles intersected the nominal path, the demonstrator executed

collision-avoidance manoeuvres, either skirting the object laterally or elevating the end-effector to pass above it. A

separate data collection script is written so that the motors would provide zero torque, and would only be used for

encoding the data only. The data collected from the actuators includes: timestamps of each data entry t, the position
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at the timestep p, the velocity v and the output torque τ . Initially, to validate the imitation algorithm, an xArm Lite

6 is used for the data collection process coupled with an Intel RealSense D415 (Figure 8-2a). xArm Lite 6 contains

6 degrees of freedom with a payload at the end-effector of 500 grams (more details can be referred to Figure 8-2b).

Each joint of the xArm is able to have full position, velocity and torque control, or the mix of all three. In addition,

each joint is able to record the proprioceptive data. The Intel RealSense D415 has a resolution of 1920 × 1080 for

RGB image and 1280 × 720 for depth image, each at 30 FPS and 90 FPS respectively. The detailed specs of the two

hardware used for data collection are listed in the table 8.4 under.

Table 8.3: Proprioceptive packet logged at 100Hz

Field Dim. Units ROS type Description

Timestamp t 1 µs int64 UNIX epoch synchronised to camera clock
Joint position q 6 rad sensor_msgs/JointState.position Absolute joint angles
Joint velocity q̇ 6 rad s−1 JointState.velocity First-order finite difference of q
Joint torque τ 6 Nm JointState.effort Current-derived torque estimate

(a) Intel RealSense RGB-D camera (b) xArm Lite 6 manipulator

Figure 8-2: Data collection hardware: (a) Intel RealSense camera; (b) xArm Lite 6 robot arm.

Table 8.4: Hardware specifications of the data-collection setup

Property UFactory Lite 6 Intel RS D415 Notes(29) (30)

DoF 6 − All revolute, ISO 9409-1-50 flange
Payload / Reach 0.6 kg / 440mm − Desktop-scale cobot
Repeatability ±0.5mm − Harmonic drives + abs. encoders

Max tip speed /
joint speed 500mm/s / 180deg/s − Cartesian / axis limits

Joint ranges (J1−J6)
±360◦, ±150◦,
−3.5◦:300◦, ±360◦,
±124◦, ±360◦

− Firmware soft limits

Encoders Multi-turn abs. 16-bit − Exposed in SDK
Weight 7.2 kg 72 g Camera = 13 % of arm payload

Interface / SDK TCP (Eth.), Py/C++/ROS 2 USB 3.2 Gen 1, librealsense 2 Native Linux drivers
Camera-specific:

RGB res./fps − 1920×1080@ 30 fps Rolling-shutter sensor
Depth res./fps − 1280×720@ 90 fps Active−IR stereo (55 mm baseline)
FoV (H ×V ) − 69.4◦ × 42.5◦ Datasheet value

Range / Accuracy − 0.5m to 3m / <2%@ 2m Indoor/outdoor capable

The resulting dataset combines time-synchronized joint-space proprioception from the xArm, including six-axis’s

position, velocity, and output torque, with RGB-D images from Intel RealSense D415. This produces a sensor-

complete record of hand-guided motion suitable for high-fidelity supervision in downstream imitation learning

pipelines. To ensure diversity and improve generalization, the lighting conditions of the collection workspace were
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systematically varied. Dataset were collected in different days with different natural light conditions, and artificial

lights. And in addition, the robot arm was repositioned to alter the visual background. In addition, the expert-

demonstrated trajectories were diversified, as illustrated in Figure 8-3, with motions directed toward different re-

gions of the workspace to promote a more robust learned policy.

Figure 8-3: xArm data collection in various directions. In the figure two sample directions collected are shown as examples

8.2 Dataset Processing

Figure 8-4: Illustration on how the data is being collected and processed.

The expert demonstration dataset was recorded as ROS bag files, each containing multiple consecutive trajectories.

An offline parsing pipeline segmented each bag into discrete episodes, defined as single end-effector point-to-point

motions whose duration depended on the selected Cartesian path. Each episode preserved the complete multi-

modal state vector detailed in Table 8.3. Joint-state feedback from the xArm was streamed at 100Hz, while the

Intel RealSense RGB-D camera published image streams at 30Hz. To obtain temporally consistent samples, the
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proprioceptive triplet
[
q, q̇, τ

]
was linearly interpolated to the RGB-D camera timestamps, producing temporally

aligned tuples of the form

⟨qk, q̇k, τk, I
RGB
k , IDk ⟩, k = 1, . . . , N.

Initially, both RGB and depth modalities were considered as inputs to the perception network and processed jointly.

As the raw RGB and depth frames were not hardware-synchronized, each RGB frame was matched to the nearest

depth frame based on timestamp proximity. Raw depth images from the Intel RealSense sensor exhibited imper-

fections, including missing pixels and localized voids. To mitigate these effects, an initial preprocessing stage was

applied, consisting of Intel’s built-in hole-filling filter followed by a temporal smoothing filter to suppress abrupt

pixel-wise depth variations. The joint-state data from the xArmwas included without additional preprocessing, con-

taining positions, velocities, and output torques for all joints. For ingestion by the imitation-learning policy, each

episode was segmented using a sliding horizon of five consecutive frames, producing fixed-size spatio-temporal

tensors that capture short-term dynamics while conforming to the input dimensionality requirements of the down-

stream network.

Figure 8-5: Pipeline for data processing

8.3 Loss Functions

The goal is to predict the future joint states given a sequence of past observations. Two loss terms are used: Mean

Squared Error (MSE) Loss: Let q̂t+i denote the predicted joint state at future timestep i, and qt+i the corresponding

ground truth. The standard MSE loss is given by:

LMSE =
1

Tfuture

Tfuture∑
i=1

∥q̂t+i − qt+i∥2.
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Continuity Loss: To ensure that the predicted sequence is continuous with the observed past, we add a continuity

loss that enforces the first predicted state to be close to the last observed state:

Lcont = λcont ∥q̂t+1 − qt∥2,

where λcont is a weighting factor (set to 0.1 in our experiments).

The total loss becomes:

L = LMSE + Lcont.

Future loss functions to consider We keep the joint-space setting and avoid costly kinematics/maps. Let

∆q̂t+i = q̂t+i − q̂t+i−1 with q̂t ≡ qt, and similarly ∆qt+i = qt+i − qt+i−1.

(1) Early-Weighted MSE (focus on first steps).

LwMSE =
1

Z

Tfuture∑
i=1

α i−1 ∥q̂t+i − qt+i∥22, Z =

Tfuture∑
i=1

α i−1, α ∈ (0, 1).

(2) First-Step Activation Margin (hinge). Encourage a non-zero first move when not near completion (cheap

gate via joint-space distance to a known goal qg , if available).

Lact = 1{∥qg − qt∥2 > ρ} max
(
0, m− ∥∆q̂t+1∥2

)
,

with small marginm (e.g., 1-2% of per-joint vel. limit) and gate ρ.

(3) Directional Progress (cosine, joint-space). If a joint-space goal qg is available, align the first predicted step

toward qg :

dg = qg − qt, Ldir = 1− ⟨∆q̂t+1, dg⟩
∥∆q̂t+1∥2 ∥dg∥2 + ϵ

.

(If qg is not available, replace dg with the demo’s short-horizon direction qt+h − qt, small h.)

(4) Cheap Smoothness (acceleration L2).

Lacc =
1

Tfuture − 1

Tfuture∑
i=2

∥∆q̂t+i −∆q̂t+i−1∥22.

8.4 Architecture

This section situates our design in the landscape of imitation-learning (IL) policies for vision-based control, moti-

vates our choice of a lightweight fully connected (FCL) temporal head, compares major architectural families, and

then specifies the proposed VisionJointPlanner in detail.
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Table 8.5: Architectural families for IL-based, vision-conditioned control (typical online inference characteristics).

Family Temporal Pros / Typical use Cons / Compute

FCL / 1D Conv Short window; MLP or shallow conv Lowest latency, tiny footprint;
easy quantization; reliable online
control (31)

Limited long-horizon context;
weaker for strongly multi-modal
futures

Transformers Causal self-attention over vision/joint/goal tokens Long context; multi-task scaling
(RT-1/RT-2, PerAct); flexible goal
injection (32; 33; 34; 35)

Higher lat./mem. (O(T 2d)); tun-
ing/data hungry; embedded de-
ployment harder

Diffusion policies Iterative action denoising Handles multi-modality; precise
rollouts (21)

Multi-step sampling (10–50) in-
creases latency; nontrivial for
hard real-time

8.4.1 State of the Art Architectures

Modern IL controllers for visuomotor control cluster into three families. First, lightweight feedforward heads fuse

short visual histories with proprioception (and optionally a numeric or keypoint goal) and directly regress near-term

actions usingmultilayer perceptrons (MLPs) or temporal 1D convolutions; such designs remain competitive for short

horizons and excel when real-time latency is a constraint (31). Second, Transformer-based sequence models

encode tokens from vision, proprioception, and goal modalities using self-attention, capturing long-range temporal

structure and supporting multitask learning at scale (e.g., RT-1/RT-2, Decision Transformer, Perceiver-Actor/PerAct)

(32; 33; 34; 35). Third, diffusion-policy heads generate action sequences via iterative denoising conditioned on

observations and goals, offering strong multi-modality and precision at the cost of iterative inference (21).

When the task intent is best expressed visually, goal images or crops can be injected and aligned to the current

observation through cross-correlation (Transporter) or text-conditioned pathways (CLIPort) (36; 37); numeric 3D

goals remain standard in control-centric deployments. For datasets lacking explicit goals, goal-conditioned super-

vised learning with hindsight relabeling (GCSL) provides a principled recipe to retrofit goals from achieved states

(38).

8.4.2 Architecture for IRIS

Our deployment target is a cinema robot arm executing smooth, high-speed camera motions under tight control

deadlines on embedded hardware. The principal constraint is deterministic worst-case latency rather than asymp-

totic expressivity. An FCL temporal head with fixed input shapes yields a compact compute graph, minimal memory

traffic, straightforward quantization/pruning, and stable cache behavior, thereby reducing jitter and bounding ex-

ecution time. While Transformers and diffusion heads offer longer context and multi-modal competence, their

attention scaling and multi-step sampling respectively impose latency and memory costs that are misaligned with

on-rig, hard real-time requirements without substantial additional engineering. We therefore adopt an FCL tempo-

ral head and keep interfaces (modalities and tensor shapes) compatible with later upgrades should compute budgets

expand.

We now describe the proposed goal-conditioned FCL architecture. At time t, the inputs comprise a numeric goal

point g ∈ R3, a window of five RGB images {It−4, . . . , It} with Iτ ∈ R3×H×W , and the corresponding joint states
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{qt−4, . . . , qt} with qτ ∈ R6. The model predicts a five-step future joint sequence Q̂future = {q̂t+1, . . . , q̂t+5} ∈

R5×6.

Encoders Each image is processed by a ResNet-18 backbone (ImageNet-pretrained; final fully connected layer

removed, optionally frozen), producing a 512-dimensional feature:

ϕ(Iτ ) ∈ R512. (8.1)

Joint states and the goal are embedded via small MLPs:

ψ(qτ ) = MLPq(qτ ) ∈ R64, γ(g) = MLPg(g) ∈ R32. (8.2)

Per-timestep tokens are formed by concatenation:

eτ =
[
ϕ(Iτ ) ; ψ(qτ ) ; γ(g)

]
∈ R608. (8.3)

Temporal fusion and prediction head We stack tokens over the history Et = [et−4, . . . , et] ∈ R5×608, flatten,

and pass them through a lightweight temporal MLP with GELU activations and LayerNorm:

zt = MLPtemporal
(
vec(Et)

)
∈ Rh. (8.4)

A final MLP maps zt to a fixed-size output that is reshaped into the future joint sequence (absolute or deltas):

Q̂future = reshape
(
MLPhead(zt), 5, 6

)
. (8.5)

Fixed input shapes enable operator fusion in compiled runtimes, reducing latency and jitter at deployment.

8.5 Trainings

In the beginning, to validate the network’s effectiveness and if it is able to output viable path for the robot arm,

a small dataset is used to train the model. The dataset only consist of 25 expert demonstrations, and is only been

trained over 50 epoches. The training results can be seen in Figure 8-7

The initial results from the small dataset conclude the following findings:

• The training is able to converge

• The output path-plan is feasible

However, when examining the generated path plans down to individual joint movements, some joint angle outputs

are erratic and non-periodic. As illustrated in Figure 8-8, joint angles 4 to 6 significantly deviate from the ground
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Figure 8-6: VisionJointPlanner: compact 3D ResNet-18 encoder→ 512-D visual feature, concatenatedwith 6-D joints; a temporal
window is processed by three Conv1D layers, pooled over time, then mapped by an FC head to Q̂future.

Figure 8-7: First policy training results
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Figure 8-8: First policy tests

truth. This discrepancy likely arises from insufficient ground-truth data during training, causing the network to

lack accurate guidance for moving these joints. To address this issue, additional data was collected with explicit

movements for all six joints of the cinema robot arm. This new dataset, termed "policy 2," includes synchronized

movements for all joints at each timestep, ensuring correct joint correspondences. Such comprehensive reference

data is critical for imitation learning in path planning, as there are theoretically infinite joint configurations to

transition between points A and B. Providing expert demonstrations for all six joints helps the network converge

toward a consistent and accurate path-planning strategy. The training and testing results trained from dataset policy

2 can be seen in Figure 8-9 and Figure 8-10.

Figure 8-9: Second policy training results

Finally, to overcome the derivation of the autonomous path-planning overtime from policy 2, the data set had been

scaled to over 17897 samples for training, 1224 samples for validation, and 950 samples for testings. After adding
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Figure 8-10: Second policy tests

the additional dataset, the training results can be seen from Figure 8-11, where the dataset has been trained over

100 epoch, doubling the number of iterations than before as well. The figure also suggests a clear convergence in

the validation data that the policy can generalize well in different path-planning scenarios. Figure 8-12 shows five

different testing results of the zero-shot path planning data. Overall, the generated path plans closely match the

expert trajectories, with only slight deviations. Importantly, when encountering obstacles, the policy demonstrates

strong convergence toward collision-free paths for the cinema robot. The notable improvement observed in policy 2

highlights the effectiveness of the data scaling method in imitation learning, suggesting the potential for even better

generalization and obstacle-avoidance capabilities with larger datasets. Furthermore, the enhanced performance

of policy 3 can be partially attributed to its scaled-up and diverse dataset, which includes varied environmental

backgrounds and distinct path-planning objectives, further improving the model’s generalization ability.

Figure 8-11: Final policy training results
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Figure 8-12: Final policy testing results

8.6 Deployment

Once the policy was trained in simulation and validated offline, additional integration and safety measures were

implemented to enable deployment onto IRIS. The overview of the full stack of IRIS can be seen in Figure 7-1. IRIS

was developed on Ubuntu 20.04 with ROS Noetic, using Python for perception, data pre-processing, and policy

inference; and the Unitree SDK for low-level joint control via field-oriented control (FOC) commands.

8.6.1 System Initialization

At startup, IRIS is driven to a pre-defined "Home" configuration for each joint at a steady low speed. The "Home"

position starts with IRIS resting with the shoulder joint pointing downwards, and the elbow joint positioned at 180◦.

This initialization minimizes the chance of initial collision. Hardware-level safety limits are configured through the

FOC interface, including:

• Torque, velocity, and position limits for each joint.

• Joint temperature thresholds to prevent overheating.

• Self-collision avoidance parameters.

These constraints are enforced in parallel to policy execution at the low-level in the SDK controller level, ensuring

that any violation triggers an immediate halt.
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8.6.2 Policy Inference

During runtime, synchronized RGB frames from the Intel RealSense camera and proprioceptive joint states are

fed into the perception pipeline. The RGB images undergo light pre-processing before being passed to the trained

imitation-learning policy, which outputs the next joint position or velocity commands. These commands are streamed

to the Unitree SDK at the desired control rate at 30Hz.

8.6.3 Execution Monitoring and Logging

Given the trained policy, additional integration steps are required to deploy it in the real world. The runtime system

is implemented on Ubuntu 20.04 with ROS Noetic, using Python for perception and policy inference and the Unitree

SDK for low-level control. At startup, the robot is initialized in a safe home configuration, and actuator limits for

torque, velocity, position, and temperature are set via the FOC interface. A goal-directed start routine moves the

arm to a seed configuration near the task goal to avoid zero-action attractors. During execution, the policy receives

synchronized RGB frames from the end-effector camera and current joint states, predicts the next joint position

or velocity commands, and sends them through the Unitree SDK at the control rate. Commands are filtered and

rate-limited to ensure cinematic smoothness and prevent mechanical stress. Safety monitors - including joint limit

checks, torque/temperature thresholds, self-collision detection, and depth-based obstacle proximity - are enforced

at every cycle, with any violation triggering an immediate halt. Progress toward the goal is continuously tracked,

and if stagnation is detected, an IK-based recovery motion blended with policy output is applied. All telemetry,

including states, actions, safety events, and progressmetrics, is logged for post-deployment analysis. Amore detailed

pseudocode for the deployment of the IL pipeline can be seen in algorithm 2.

8.6.4 Challenges and Strategies

Zero-Action Attractor

When IRIS was initialized in the beginning, the policy produced near-zero joint updates for several consecutive

cycles, resulting in stagnation. This zero-action attractor phenomenon arises from the policyâĂŹs bias toward pre-

viously observed static windows during training. In addition, the goal point is never specified as an input in the

training loop, resulting the model confused in the direction it should be moving. Two complementary strategies

were implemented:

• A goal-directed start routine, computed via resolved-rate inverse kinematics (IK), moves the arm toward

an intermediate seed configuration close to the task goal. This ensures the policyâĂŹs input sequence begins

with non-zero motion.

• A stagnation detector monitors progress toward the goal; if displacement remains below a threshold for N

consecutive steps, a short IK-generated motion is blended with the policyâĂŹs output before control reverts

to the learned policy.
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Algorithm 2: IL Policy Execution with Goal-Directed Start (ROS Noetic + Unitree SDK/FOC)
Data: Camera frames It, joint state (qt, q̇t), goal pose G (EE pose or waypoint set)
Result: Safe real-time control commands to Unitree FOC actuators
Initialize:

Start ROS core (Ubuntu 20.04);
Launch Python node (policy + perception);
Connect Unitree SDK; Load trained policy πθ ;
Home robot→ qhome; set filters (low-pass & rate limiters);
Define stuck detector: windowW , thresholds ϵact, ϵprog;

Goal-Directed Start (anti-zero-action):
Compute short IK path to a goal-biased seed qseed near G (within joint limits);
Execute a time-limited (T_seed) minimum-jerk jog: qt+1← Interp(qt,qseed) with saturation;
If safety triggers (collision, over-torque, over-temp)⇒ halt and alert;

Main Control Loop (at fc Hz):
Acquire synchronized (It,qt, q̇t);
Form input window Xt = {(It−k,qt−k)}

Tpast−1
k=0 ;

∆̂qt:t+H ← πθ(Xt) ; // Predict future joint deltas
Select first-step command: ∆qt ← LPF(∆̂qt); apply rate/accel limits;
(Optional) add tiny exploration nudge near home: ∆qt ← ∆qt +N (0, σ2) for t < T_nudge;
Send command to Unitree SDK (position or velocity setpoint); enable FOC tracking;

Safety, Progress, and Recovery:
Monitor: joint limits, torque/temp, depth-based proximity, self-collision;
Update progress metric Pt (e.g., EE distance to G or waypoint index);
if ∥∆qt−k:t∥∞ < ϵact or ∆Pt−k:t < ϵprog for k ∈W then

// Policy stall / zero-action attractor
Execute Goal Nudge: short IK push toward next waypoint with PD assist;
Blend command: ut ← αuIK

t + (1−α)uπ
t , α∈ [0.2, 0.5];

end
if hard safety trip then

Stop and hold (gravity-safe posture)→ wait for operator;
end

Termination:
If G reached (within tolerance) or user stop: decelerate with minimum-jerk to hold pose;
Log telemetry for analysis (states, actions, safety flags, progress);

Depth Sensor Noise

Raw depth data exhibited temporal flicker and spatial holes, particularly around reflective or thin objects. Although

the policy could tolerate minor noise, larger artifacts occasionally caused spurious obstacle detections. To mitigate

this:

• Intel’s built-in hole-filling and temporal smoothing filters were applied online.

• A spatial median filter over a fixed region of interest was added to reject isolated outliers.

Note: The final policy omits depth input because the depth sensor on IRIS has a near-field blind zone (no reliable

returns below ∼ 30 cm), which is common in close-range shots. Instead, RGB input with temporal context (e.g.,

stacked frames or optical flow) allows the model to recover depth cues from parallax, motion, occlusions, and size

priors, and proved more reliable for this application.
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Figure 8-13: Two testings done in the real world: one with the obstacle, another without obstacles

8.7 Discussion and Future Work

IL was initially selected because it enables online obstacle avoidance of both static and dynamic obstacles and ex-

hibits strong generalization to novel scenes. This is essential for a consumer-oriented system. IRIS should operate

safely and autonomously without requiring users to understand robot operation. IL also leverages expert demon-

strations to reproduce cinematographic moves, allowing IRIS to execute shots that align with professional practice.

Empirically, while IL generalized well to zero-shot environments and across platforms, the trade-off in safety and

predictability can be non-trivial for cinema use. During testing on IRIS, learned policies exhibited higher jerk and

stepwise actuation compared with continuous manual teleoperationâĂŤan effect that becomes noticeable when

pixel-level framing is required. These observations motivate a controller that retains IL’s perception-driven respon-

siveness while imposing tighter smoothness and safety structure.

A practical direction is a hybrid stack in which an IL policy proposes perception-informed intent, a fast trajectory

layer enforces cinematic smoothness and actuator constraints (39), and a thin safety supervisor guarantees constraint

satisfaction at runtime (40). Perception-aware control, where the controller directly optimizes objectives tied to

visibility, feature tracking, and obstacle margins, has shown robustness gains in related domains (41; 42) and can be

adapted to maintain subject framing and line-of-sight for cinematography.

On the learning side, scaling and diversifying data remains a priority. Varied backgrounds and lighting, richer

mixtures of static/dynamic obstacles, and multiple task objectives help reduce covariate shift on set. Conditioning

policies on user-specified goal poses (or short waypoint sequences) and incorporating standard planning terms

(clearance, smoothness/jerk, time) directly into the loss can turn the current ’move-forward’ bias into general goal-

directed behavior. To further improve motion quality, diffusion-based visuomotor policies are promising drop-in

replacements or finetuning targets, often yielding smoother, more stable actions than standard behavior cloning
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(21).

Taken together, a perception-informed IL module, a trajectory layer with TOPP-RA-style retiming (39), and a pre-

dictive safety filter (40), all shaped by perception-aware objectives (41; 42), could be a potential path to achieve

the responsiveness of learning while preserving the predictability, safety, and temporal consistency required for

repeatable, pixel-level shots on IRIS.
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Chapter 9

Validations

Figure 9-1: Breakdown of the evaluation testing setup.

This chapter presents a set of evaluations conducted to validate both the low-level actuator performance and the

high-level cinematic shot quality of IRIS. In evaluation, to justify the objectives listed in Chapter 2, we focus on three

aspects: actuator tracking and repeatability, trajectory fidelity under dynamic motion, and teach-and-repeat path

following. The setup for these validations is shown in Figure 9-1.

9.1 Actuator Performance Evaluation

Cinema applications demand smooth, precise joint tracking. This section verifies that the FOC-driven actuators in

IRIS can achieve stable and accurate performance.
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In this evaluation, joint-level tracking accuracy was evaluated by commanding sinusoidal profiles under impedance

control with gravity feedforward. Commanded and measured positions were logged at 1 kHz.

Figure 9-2: Actuator tracking performance: commanded vs. actual position over time for one representative actuator.

Results Figure 9-2 shows close alignment between commanded and measured trajectories, with small transient

deviations and near-zero steady-state bias across the tested range. Tracking error increases modestly with payload,

attributable to unmodeled link flexibility and joint friction. Overall, the behavior supports the high-accuracy and

smooth-motion objectives for IRIS. Looking ahead, periodic parameter identification andmodest structural stiffening

should further reduce these errors; additionally, lightweight strain/flex sensing on critical links could enable closed-

loop compensation for compliance during loaded motions.

9.2 Tracking Accuracy

For repeatable cinematic moves, the end-effector of IRIS must adhere closely to commanded paths in Cartesian

space while remaining dynamically well-behaved in joint space. In this evaluation, IRIS executed sinusoidal and

trapezoidal trajectories; commanded and measured states were logged at 1 kHz and compared in both frames.

As shown in Figure 9-3 and Figure 9-4, the executed motion closely overlays the references with smooth, low-

amplitude residuals. Small phase offsets appear at higher speeds and around curvature changes, yet the deviations

remain bounded and visually imperceptible for the tested move profiles. The combined Cartesian and joint-space

views indicate that the kinematic mapping and low-level control preserve trajectory fidelity expected for profes-

sional camera moves, and that jerk-limited references further promote the desired cinematic smoothness.
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Figure 9-3: End-effector tracking performance for IRIS: commanded vs. actual trajectory in Cartesian space.

Figure 9-4: Joint-space tracking performance for IRIS: commanded vs. actual joint positions.
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9.3 Repeatability Test

Consistent framing across takes relies on the ability of IRIS to return to the same target configuration from a stan-

dardized start. Here, each joint was driven from home to an identical terminal pose across N = 30 trials under

unloaded and 1.5 kg payload conditions; final encoder readings were recorded and summarized.

Figure 9-5: Repeatability results for IRIS: endpoint dispersion across repeated trials.

Figure 9-6: Trajectory repeatability for IRIS: representative overlays of repeated executions.

The clusters in Figure 9-5-Figure 9-6 remain tight across joints and payload conditions, with dispersion concentrated

within a narrow band around the setpoint. Payload introduces a slight broadening of the cluster, consistent with

small compliance and friction effects, yet the aggregate behavior supports frame-accurate re-takes and alignment-

sensitive workflows such as VFX plate acquisition and motion-matched inserts.

9.4 Path-following Accuracy (Teach & Repeat)

Teach-and-repeat allows an operator to demonstrate a camera move once and have IRIS reproduce it reliably. During

the teach phase, joint states and timestamps were recorded while guiding IRIS along the desired path; the repeat
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phase executed the captured trajectory with time-synchronized playback. Deviations were computed against the

taught path in both joint and Cartesian spaces.

Figure 9-7: Path-following test for IRIS: overlay of taught (reference) and repeated trajectories.

The overlay in Figure 9-7 shows strong agreement between the demonstrated and reproduced paths. Errors are

smooth and low-frequency, with small phase shifts near sharper turns but no discontinuities, indicating stable timing

and consistent execution. In practice during a film production, this level of agreement is sufficient for matching beats

to on-set cues and repeating complex blocking; synchronized clocks and minimum-jerk re-timing further improve

temporal alignment on longer paths while preserving the cinematic character of the motion.
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Chapter 10

Conclusion

10.1 Achievement and Problems Addressed

This project’s goal has always been bringing cinema robot arm to the general consumers who love cinema and

filming. It meant to build a tool that enable filmmakers and hobbyists to be creative, bold and carry their ideas into

fruition.

The design of IRIS demonstrated the feasibility of democratizing robotic cinematography through open-source, 3D-

printed, and learning-enabled robotic systems. It offers an accessible alternative to high-end rigs and opens up new

creative possibilities for independent filmmakers and studios.

On the hardware side, by leveraging off-the-shelf actuator modules and timing-belt-driven transmission, we engi-

neered a 3D-printed robot arm that is low-budget with intuitive control methods. On the software side, instead of

using external controller or complex professional software, an iOS application is designed to be carried with the user

everywhere since everyone already have a mobile device in their pocket. Any extra devices or complex software

can appear redundant and unnecessary. Finally, the project integrated all the mechanical design, firmware, and the

high-level control algorithm to make the project as vertically-integrated as possible. This further helps the project

to bring down the cost, and accessibility to the masses.

10.2 Reflections and Limitations

In the beginning, the project aim to address the gap between the expensive hardware cinema robot arm faces,

the bridge that gap to general consumers by reducing the cost. However, this is not without the challenges and

limitations. In a nutshell, to bring any product to the consumer market, we realized that there are a lot more to be

considered and polished to be truly consumer ready. One of the biggest drawback is the industrial design of the robot.

Consumers care about the aesthetics of the product besides their functionalities, which can often be overlooked in

the industry. This objective of focusing on the design of the robot was not fully considered during the design phase,

74



thus making the final robot design too industrial instead of looking friendly. Moreover, despite the addition of the

mobile application, there are still a lot of functions required to be added before the product is ready to be shipped

to the consumers. Current applications only addresses simple teleoperations and the teach and repeat using the

built-in IMU on the mobile device. More complex controls for the robot arm, including object tracking, key-frame,

speed controls, and face tracking would still need to be added to be a more complete product. Thirdly, although

using addictive manufacturing can drastically reduce the cost of the product, this greatly sacrifices the accuracy of

the cinema arm. Finally, to achieve full vertical integration, actuators still need to be designed in-house. In addition,

the current design uses the same actuator in all joint, which is not optimal as each joint’s torque requirement differs

from each other. For example, the actuators used at the wrist joint can be reduced to smaller-torqued actuators to

further minimize the cost.

10.3 Future Outlooks

The current design sets the ground work of what a budget cinema robot could be - a low-cost design that is tailored

for cinema purposes, with an intuitive user-interface. However, more work and iterations are required for the future

and making it consumer ready.

• Housing design: current cinema arm do not have a housing to hide away the timing-belt and the electronics,

making it daunting to an average consumer. In addition, without a casing, the design lookmore like a student’s

capstone project than a matured product that is ready for the market. A new industrial design for the cinmea

robot that fits the tastes for filmmakers and photographers could be essential to the product’s success and

appeals.

• More mobile App functions: As mentioned in the prior dissicion, additional functions like object tracking,

pre-planned paths, gesture controls, and face recoginition controls could be handy when it comes to user

controls. Like the DJI consumer drone technology, where they have the functions embedded to the drone

itself and one single polished application on the mobile device, the average consumer may find it a lot less

intimidating to use than a complex control software for the professionals.

• Actuator design: The current actuators are using off-the-shelf Unitree motors. This is suitable for the initial

prototype, but not for long-term mass production. Designing the in-house motor, gearbox, and motor control

is critical for long-term success. On top of that, an electrically controlled stoppingmechanism should be added

for the safety concerns when the robot arm is off power.

• Integration: Further integrations are still required. The robot arm is small and ideally be portable, the base

still lacks a powerful enough battery pack to power all six actuators. In addition, a suitable microcontroller is

needed to process the on-board controls of the cinema robot, while keeping the cost down.

• Materials: Finally, instead of using PLA for the printed material, some carbon-fiber enforced materials should

be explored to further incease the stiffiness of the parts and increase accuracy.
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Chapter 11

Future Work

11.1 Bimanual IRIS (Under Development)

Figure 11-1: Real-life build of the bimanual IRIS

To demonstrate the scalability of the design, a bimanual cinema system was prototyped by mounting two identical

IRIS units on a common base, each controlled independently but time-synchronized; an overview is shown in Fig-

ure 11-2. This configuration opens creative workflows that a single arm cannot realize. Here are some ways I have

imagined a bimanual cinema system could achieve:

• Dual-camera choreography. One IRIS carries the A-camera for the hero shot while the second runs a syn-
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Figure 11-2: Concept sketches of a bimanual IRIS rig. Independent controllers synchronize via a sharedworld frame and timeline.

chronized B-camera at an offset angle or focal length, enabling simultaneous wide/close coverage with matched

motion.

• Active lighting partner. One IRIS flies a key/fill source (e.g., LED panel or reflector) while the other carries

the camera; light position and orientation are co-animated with framing for consistent catchlights and motivated

moves.

• Dynamic background screen. One IRIS holds a high-brightness display/LED tile as a live background for prod-

uct shots, while the second IRIS carries the camera; the on-screen content updates in real time based on the camera

IRIS’s pose and focal length to maintain parallax- and perspective-correct imagery.

11.2 iOS App for Teleoperation (Under Development)

To improve on-set usability, an iOS application was built to teleoperate IRIS without a tethered gamepad or laptop.

The app aims to communicate over Bluetooth for local testing (andWi-Fi for longer range) with a lightweight server

on the IRIS control computer (Ubuntu 20.04), bridging to ROS Noetic.

Three input modes are supported:

1. Individual Joint Control. Sliders or jog buttons command joint angles directly for setup and calibration. A

live 3D model mirrors IRIS in real time.
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Figure 11-3: iOS teleoperation app for IRIS: joint sliders, Cartesian pose input, device-IMU control, and live model preview.

2. End-effector Pose Control. Cartesian targets (position & orientation) are sent to the backend, which solves

IK (chapter 5) and streams joint setpoints to IRIS. This mode is suited for precise framing.

3. Device-IMU Pose Control. The phone acts as a ’virtual handle’: fused pose (e.g., VIO/IMU) defines the

desired end-effector pose. A gain and workspace scale (e.g., 2:1) map hand motion to safe, precise robot

motion.

For handheld control, the operator simply moves the mobile device in space; the phone’s fused pose (VIO/IMU)

is mapped to the end-effector pose of IRIS. To keep motion cinematic, the input stream is low-pass filtered and

constrained by velocity clamps, which remove high-frequency jitter and prevent abrupt jumps. A press-and-hold

’clutch’ enables motion only while depressed; releasing it freezes the target so the operator can reposition without

affecting the robot. The app also provides shot utilities, record/stop for teach-and-repeat, save/load of shot files, and

a ’safety bubble’ slider to temporarily expand keep-out zones during rehearsals. A representative screen is shown

in Figure 11-3.

Overall, the vision of the mobile app composes as follows:

• Core functions: log current pose; command individual joints; IK-based Cartesian control; live 3D visualization;

teach-and-repeat record/playback.

• Teleoperation options: Bluetooth (local), Wi-Fi/UDP (stage distance); device-IMU mode; optional CV modules

(e.g., person/prop tracking) that bias Cartesian targets.

• Future directions: on-device path sketching (draw-to-trajectory); AR overlay for safety bubbles and reachable

set; shot lists with takes/versioning; multi-IRIS synchronization controls; operator presets (speed/accel/jerk caps);

and a calibration wizard to align phone and end-effector frames.
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