
Abstract

This poster compares Q-learning, Deep Q-learning (DQL), and
Policy Gradient methods for the cart-pole problem under noisy
conditions. While DQL shows promise, it suffers from instability and
catastrophic forgetting. Proximal Policy Optimization (PPO) and
Soft Actor-Critic (SAC) demonstrate superior stability and
robustness. Our study highlights the importance of hyperparameter
tuning and reward shaping, revealing that PPO and SAC are better
suited for dynamic environments than traditional Q-learning.

Objectives

The cart-pole task aims to use reinforcement learning to maintain
balance despite significant observational noise. The agent applies a
constant force to move the cart left or right, keeping the cart within [-
2.4m, +2.4m] and the pole within [-12°, +12°]. This setup challenges
the agent to develop robust control policies that handle noise and
maintain stability within defined constraints.

Methods

1. Tabular Q-Learning: 

Results
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Conclusion

Our study investigated extensively the pros and cons of Q-learning,
DQL, PPO, and SAC for the cart-pole problem. Classical Q-learning
struggles with curse of dimensionality and instability, while DQL
faces issues with catastrophic forgetting. PPO and SAC demonstrate
superior stability and robustness, making them ideal for real-world
dynamic environments. Hyperparameter tuning and reward shaping
are crucial for enhancing performance, reducing required training
episodes. In addition, models trained with higher noise variance tend
to perform better under sudden impulsive disturbances, with faster
stability convergence and lower energy requirement.

References

CLEAR-Net – Cart-pole Learning with Enhanced Adaptive 
Reinforcement Network
Qilong Cheng*, Aravind Narayanan*
Electrical and Computer Engineering, University of Toronto*

Figure 1: Cart-pole balancing task showing the agent's goal to 
maintain cart and pole within set limits using RL

2. Deep Q-Learning (DQL)

Figure 6: Overview of the Policy Gradient Method architecture 

3. Policy Gradient Method (PGM)

Figure 2: Overview Tabular reinforcement learning

A big part for DQL is the hyperparameter tuning. In this project we 
tested different learning rate, batch size, epsilon decay rate and the 
noise level to be trained on. And we selected the optimal 
hyperparameter as our baseline: 

Figure 8: Comparison between the Tabular Q-learning method 
versus three different Deep Reinforcement Learning (DRL) 
methods, DQL, PPO and SAC.

Training Results 

Classical Q-learning is first implemented in the project. To solve the 
continuous observation space issue, each observation data is 
quantized to fit into different bins as shown in Figure 2. Each bin and 
its corresponding action have their respective action-state value. 
Action is drawn based on the Q-table using Epsilon Greedy.

4. Soft Actor-Critic (SAC)

Different Noise Level - Controller Robustness: 

Tabular Q-learning suffers from the curse of dimensionality, causing 
exponential increases in computation as states increase. Balancing 
performance and computational cost is crucial. Figure 3 shows 
comparisons between different bin sizes. We picked (8, 12, 8, 12) as 
our baseline for its fast convergence and stability. 

SAC balances deterministic and stochastic policies using an 
additional entropy term for optimal exploration and exploitation and 
eliminated the need for tuning epsilon decay rate. It also uses twin 
Q-networks for increased stability and an action-space wrapper to 
convert discrete actions to continuous actions. This allows us to 
deploy SAC algorithm into the discrete action-space problem.

Figure 7: Overview of the Soft Actor-Critic architecture 

The most noticeable difference is that Deep Reinforcement Learning 
(DRL) algorithms require significantly fewer episodes to converge 
compared to the Q-learning approach. Notably, Soft Actor-Critic 
(SAC) converges the fastest due to its elimination of the epsilon 
term, leading to enhanced exploration and consistent performance. 
Deep Q-Learning (DQL) converges faster than Proximal Policy 
Optimization (PPO) but tends to suffer from "catastrophic 
forgetting," causing instability. While all learning-based algorithms 
are susceptible to overfitting, resulting in some degree of 
"forgetting," PPO is the most stable and robust over extended 
training periods.

Unlike DQL, which can suffer from catastrophic forgetting, 
Proximal Policy Optimization (PPO) maintains a balance between 
exploration and exploitation by using the stochastic action space 
from the policy network, resulting in smoother learning curves 
(Figure 8). By restricting policy updates within a trust region using a 
clipped surrogate function, PPO provides more reliable learning, 
crucial for tasks like cart-pole where stable policy adjustments are 
essential.

Figure 3: Performance comparison between different bin size for 
discretization of the observation space 

Figure 4: Overview of the DQL architecture with an additional 
target network and memory buffer 

Despite impressive performance after hyperparameter tuning, the 
agent still suffered from drifting during testing because maintaining 
the cart in the middle wasn't an explicit objective. We experimented 
with different reward shaping and finalized a modified reward 
function:

Table 1: Selected hyperparameter values for DQL

rewarding the cart for staying in the middle and the pole for staying 
upright, penalizing deviations from these objectives, and heavily 
penalizing if the total step count is below 500 at the terminal state. 
This reward shaping encourages faster convergence while keeping 
the cart centered.

Figure 9: Robustness comparison of DQN models with varying 
noise levels under identical disturbances

Assessing DQN controllers trained with noise variance of 0.1, 0.3, 
and 0.5 showed that higher noise training (0.5) resulted in smoother 
pole angle variations, lower cumulative deviations, and more stable, 
reduced energy profiles, indicating greater robustness to real-world 
disturbances. PPO and SAC networks exhibited similar results. 
Interestingly, models trained with higher noise performed better 
under similar noise conditions but worse when the noise level was 
reduced. Further research is needed to develop models that handle a 
broad range of noise levels effectively.
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