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This poster compares Q-learning, Deep Q-learning (DQL), and noise level to be trained on. And we selected the optimal

Policy Gradient methods for the cart-pole problem under noisy hyperparameter as our baseline: Training Results

conditions. While DQL shows promise, it suffers from instability and Tabular Reinforcement Learning:

catastrophic forgetting. Proximal Policy Optimization (PPO) and Hyperparameters Values e ——
Soft Actor-Critic (SAC) demonstrate superior stability and Learning Rate 0.0001 : 1
robustness. Our study highlights the importance of hyperparameter Batch Size 64 | T 1y Y |
tuning and reward shaping, revealing that PPO and SAC are better Epsll%n iI:SS?S/ Rate 05%%%5 P

suited for dynamic environments than traditional Q-learning. Target N etvlv) ork Update Rate 10

Objectives Terminal Step Size 500 so

The cart-pole task aims to use reinforcement learning to maintain Table 1: Selected hyperparameter values for DQL Deep Reinforcement Learning:

Rolling Average Reward (window=100) with Bounds

balance despite significant observational noise. The agent applies a
constant force to move the cart left or right, keeping the cart within |-
2.4m, +2.4m] and the pole within [-12°, +12°]. This setup challenges
the agent to develop robust control policies that handle noise and
maintain stability within defined constraints.
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Despite impressive performance after hyperparameter tuning, the
agent still suffered from drifting during testing because maintaining

the cart in the middle wasn't an explicit objective. We experimented e
with different reward shaping and finalized a modified reward — 3" |— friaom
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R — ) Figure 8: Comparison between the Tabular Q-learning method

47 " MoveRight  » 2T T MoveLet | Ta , L _ , versus three different Deep Reinforcement Learning (DRL)
rewarding the cart for staying in the middle and the pole for staying methods, DQL, PPO and SAC.

upright, penalizing deviations from these objectives, and heavily
penalizing if the total step count is below 500 at the terminal state. The most noticeable difference is that Deep Reinforcement Learning
This reward shaping encourages faster convergence while keeping (DRL) algorithms require significantly fewer episodes to converge
""""" the cart centered. compared to the Q-learning approach. Notably, Soft Actor-Critic

Figure 1: Cart-pole balancing task showing the agent's goal to 4 Q & %P 7
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_ S CritieNework Deep Q-Learning (DQL) converges faster than Proximal Policy
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quantized to fit into different bins as shown in Figure 2. Eachbinand | §==2 \\ |
its corresponding action have their respective action-state value. | [y | | ! o SSSEES L Q
Action is drawn based on the Q-table using Epsilon Greedy. \ 3 : L e
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deploy SAC algorithm into the discrete action-space problem.
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